Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isothiocyanates, production

Mayton, H.S., Olivier, C., Vaughn, S.R and Loria, R. (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology, 86,267-71. [Pg.171]

Add 0 -5 ml. of phenyl isothiocyanate to the distillate and shake the mixture vigorously for 3-4 minutes. If no derivative separates, crystallisation may be induced by cooling the flask in ice and scratching the walls with a glass rod. Filter off the crude product, wash it with a little 50 per nent. ethanol, and recrystaUise from hot dilute alcohol. (See Table 111,123 for melting points of phenylthiourea derivatives of amines.)... [Pg.411]

Treatment of 2-imino-3-phenyl-4-amino-(5-amido)-4-thiazoline with isocyanates or isothiocyanates yields the expected product (139) resulting from attack of the exocyclic nitrogen on the electrophilic center (276). Since 139 may be acetylated to thiazolo[4,5-d]pyrimidine-7-ones or 7-thiones (140). this reaction provides a route to condensed he erocycles (Scheme 92). [Pg.60]

The problem is more complicated when the ambident nucleophile. 2-aminothiazole, reacts with an ambident electrophilic center. Such an example is provided by the reaction between 2-amino-5-R-thiazole and ethoxycarbonyl isothiocyanate (144), which has been thoroughly studied by Nagano et al. (64, 78, 264) the various possibilities are summarized in Scheme 95. At 5°C, in ethyl acetate, the only observed products were 145a, 148. and 150. Product 148 must be heated to 180°C for 5 hr to give in low yield (25%) the thiazolo[3.2-a]-s-tnazine-2-thio-4-one (148a) (102). This establishes that attack 1-B is probably not possible at -5°C. When R = H the percentages of 145a. 148. and 150 are 29, 50, and 7%, respectively. These results show that ... [Pg.61]

Adducts from various quaternary salts have been isolated, in reactions with aldehydes, a-ketoaldehydes, dialkylacylphosphonates and dialkyl-phosphonates, isocyanates, isothiocyanates, and so forth (Scheme 15) (36). The ylid (11) resulting from removal of a Cj proton from 3.4-dimethyl-S-p-hydroxyethylthiazolium iodide by NEtj in DMF gives with phenylisothiocyanate the stable dipolar adduct (12) that has been identified by its NMR spectrum and reactional product, such as acid addition and thiazolidine obtention via NaBH4 reduction (Scheme 16) (35). It must be mentioned that the adduct issued from di-p-tolylcarbodiimide is separated in its halohydrogenated form. An alkaline treatment occasions an easy ring expansion into a 1,4-thiazine derivative (Scheme 17) (35). [Pg.35]

ThiO 4-oxoselenazolidines substituted in the 3-position, have been described in a number of patents, (79, 80). They are used as intermediates in the manufacture of pharmaceuttcal products and color sensitizers in photography. They are obtained by action of isothiocyanates on a-hydroselenoacetic acid in the presence of strong base and in the absence of air (Scheme 77). [Pg.271]

Methyl (299), phenyl (299), acetyl (394). benzoyl (299, 394), and carbethoxy (292) isothiocyanates (221), R, = Me, Ph, Ac, PhCO, COjEt. have been successfully used. In some cases, a 2,5-disubstituted aminothiazole (224) was isolated as by-product (292). [Pg.289]

DiaminO 4,4-dimethyl-l,3,5-thiadiazine hydrobromide was isolated as by-product (418). Benzene sulfonates of cyanohydrin prepared from sodium cyanide and an halobenzoaldehyde, when treated with thiourea or its derivatives, afford 2,4-diamino-5-(p-halogenophenyl)-thiazole benzene sulfonates (447). Similarly, cyanoamido thiocarbamates obtained from cyanamide and isothiocyanates yield substituted 2,4-diaminothiazoles (598). [Pg.297]

Chemical Properties The formation of salts with acids is the most characteristic reaction of amines. Since the amines are soluble in organic solvents and the salts are usually not soluble, acidic products can be conveniendy separated by the reaction with an amine, the unshared electron pair on the amine nitrogen acting as proton acceptor. Amines are good nucleophiles reactions of amines at the nitrogen atom have as a first step the formation of a bond with the unshared electron pair of nitrogen, eg, reactions with acid anhydrides, haUdes, and esters, with carbon dioxide or carbon disulfide, and with isocyanic or isothiocyanic acid derivatives. [Pg.198]

Thioureas give thioxo analogues of a variety of the above syntheses (52JOC542), although these thioxo products are usually prepared from isothiocyanates (Section 2.15.5.2.1). Examples are known in the pyrido-[2,3-[Pg.225]

Amongst the more unusual reactions, 2,3-thiazolo fused pyrido[3,2-d]pyrimidines have been prepared from 3-aminopicolinic acid and 2-bromothiazoles, whilst a similar derivative resulted with allyl isothiocyanate (221 222) <72IJC602). Similar products are also produced in [3 + 3] reactions of 2-aminothiazoles (Section 2.15.5.7.1). [Pg.226]

Azoles containing a free NH group react comparatively readily with acyl halides. N-Acyl-pyrazoles, -imidazoles, etc. can be prepared by reaction sequences of either type (66) -> (67) or type (70)->(71) or (72). Such reactions have been carried out with benzoyl halides, sulfonyl halides, isocyanates, isothiocyanates and chloroformates. Reactions occur under Schotten-Baumann conditions or in inert solvents. When two isomeric products could result, only the thermodynamically stable one is usually obtained because the acylation reactions are reversible and the products interconvert readily. Thus benzotriazole forms 1-acyl derivatives (99) which preserve the Kekule resonance of the benzene ring and are therefore more stable than the isomeric 2-acyl derivatives. Acylation of pyrazoles also usually gives the more stable isomer as the sole product (66AHCi6)347). The imidazole-catalyzed hydrolysis of esters can be classified as an electrophilic attack on the multiply bonded imidazole nitrogen. [Pg.54]

A similar regiospecific [2 -I- 2] cycloaddition across a C=S group occurred when benzoyl isothiocyanate (436) and 2,3-diphenyl-1-azirine were heated in refiuxing benzene for 12 hours. The product obtained was shown to be (438) and an intermediate such as (437) could also be involved in this cycloaddition (74JOC3763). In contrast, thiobenzoyl isocyanate added in a [4-1-2] fashion, and after ring expansion gave a thiadiazepine derivative. [Pg.153]

In a manner analogous to classic nitrile iinines, the additions of trifluoro-methylacetonitrile phenylimine occur regiospecifically with activated terminal alkenes but less selectively with alkynes [39], The nitnle imine reacts with both dimethyl fumarate and dimethyl maleate m moderate yields to give exclusively the trans product, presumably via epimenzation of the labile H at position 4 [40] (equation 42) The nitrile imine exhibits exo selectivities in its reactions with norbornene and norbornadiene, which are similar to those seen for the nitrile oxide [37], and even greater reactivity with enolates than that of the nitnle oxide [38, 41], Reactions of trifluoroacetomtrile phenyl imine with isocyanates, isothiocyanates, and carbodiimides are also reported [42]... [Pg.811]

The reaction of the enamines of cyclic ketones with alkyl isocyanates, acyl isocyanates, phenyl isothiocyanates, and acyl isothiocyanates has also been reported 112). The products are the corresponding carboxamides. The products from the isothiocyanates have been utilized as intermediates in the preparation of various heterocyclic compounds 113). [Pg.151]

The reaction of enamino ketones with isocyanates and isothiocyanates has not been studied extensively. The enamino ketone (162) has been shown to react with phenyl isothiocyanate to give 163, the product of C acylation 114). Enamino ester derivatives of acetoacetic ester react similarly with isothiocyanates, also giving the C-acylated products 115). [Pg.151]

Schiff s bases also underwent C or N acylation with isocyanates (698) and isothiocyanates (698,701). Further studies provided 2 1 and 2 2 reaction products of arylisothiocyanates and enamines (702) and polymers derived from enamines and bisisocyanates (703). [Pg.399]

The thiono derivatives of tetrahydro-1,3-oxazine became a subject matter of some interest since Kjaer and Jensen discovered that products of enzymatic hydrolysis of Malcolma maritima contain 6-methyl- and 6,6-dimethyl-2-thionotetrahydro-l,3-oxazine (26). The authors proved the identity of these compounds with the products of cyclization of 3-hydroxypropyl-isothiocyanate in an alkaline medium. [Pg.323]

Cycloadditions of isocyanates and their derivatives with vinyiaziridines were first reported by Alper and coworkers. From their previous studies of cydoadditions to vinylepoxides or alkylaziridines, they investigated cydoadditions to vinyiaziridines and found that such reactions with isocyanates, carbodiimides, or isothiocyanates in the presence of catalytic amounts of Pd(OAc)2 (2 mol%) and PPh3 (10 mol%) at room temperature afforded five-membered ring products 249 in 34—97% yields (Scheme 2.61) [91]. When an aziridine 247 possessing an alkyl substituent at the... [Pg.65]

The second approach for the synthesis of 2-amino-3-hydroxycarboxylic acids starts with a chiral isothiocyanate which is added, via the tin enolate, to aldehydes. The initially formed adducts are immediately derivatized to the heterocycles, from which. yj 7-2-amino-3-hy-droxycarboxylic acids result after a three-step procedure. The diastereomeric ratios of the intermediate bis-heterocyclic products range from 93 7 to 99 1 (desired isomer/sum of all others)104. [Pg.501]

Volatile Inhibitors. Of the volatile components that influence plant growth and development, ethylene has received the most attention. Literature concerned with the variety of effects produced by ethylene, factors which influence its production, and the mechanisms through which responses are expressed has been reviewed by Evenari (57). Other gaseous excretions with inhibitory effects considered by Evenari include hydrogen cyanide, ammonia, essential oils, and mustard oils (probably allyl isothiocyanate and /3-phenethyI isothiocyanate). [Pg.121]

Reaction of dimsyl anion with isothiocyanates gives a-thioamidosulphoxides 478 in 12-59% yield, whereas with isocyanates it affords a mixture of a-amidosulphoxides 479 and methylsulphinylmalonoamides 480, the products of a double addition549 (equation 289). [Pg.339]

N-Substituted amides can be prepared by direct attack of isocyanates on aromatic rings.The R group may be alkyl or aryl, but if the latter, dimers and trimers are also obtained. Isothiocyanates similarly give thioamides. The reaction has been carried out intramolecularly both with aralkyl isothiocyanates and acyl isothiocyanates.In the latter case, the product is easily hydrolyzable to a dicarboxylic acid this is a way of putting a carboxyl group on a ring ortho to one already there (34 is... [Pg.719]

Salts of dithiocarbamic acid can be prepared by the addition of primary or secondary amines to carbon disulfide. This reaction is similar to 16-9. Hydrogen sulfide can be eliminated from the product, directly or indirectly, to give isothiocyanates (RNCS). Isothiocyanates can be obtained directly by the reaction of primary amines and CS2 in pyridine in the presence of DCC. ° In the presence of diphenyl phosphite and pyridine, primary amines add to CO2 and to CS2 to give, respectively, symmetrically substituted ureas and thioureas ... [Pg.1192]

Isocyanates and isothiocyanates are reduced to methylamines on treatment with LiAlH4. Lithium aluminium hydride does not usually reduce azo compounds (indeed these are the products from LiAlH4 reduction of nitro compounds, 19-59), but these can be reduced to hydrazo compounds by catalytic hydrogenation or with... [Pg.1556]

Biphilicylides 117 can enter in cyclocondensations with carboxylic acid chlorides, carbon disulfide, and acyl isothiocyanates [126]. Certain corresponding heterocychc products 118 obtained are described for the first time (Y =N(CO)Ph Y=S) and are precursors of the new l-(2-phenylthiazol-5-yl)-5-phenyltetrazole 119 (Scheme 33). [Pg.67]


See other pages where Isothiocyanates, production is mentioned: [Pg.265]    [Pg.117]    [Pg.345]    [Pg.142]    [Pg.249]    [Pg.271]    [Pg.301]    [Pg.265]    [Pg.117]    [Pg.345]    [Pg.142]    [Pg.249]    [Pg.271]    [Pg.301]    [Pg.1077]    [Pg.126]    [Pg.17]    [Pg.280]    [Pg.102]    [Pg.55]    [Pg.397]    [Pg.254]    [Pg.55]    [Pg.234]    [Pg.722]    [Pg.169]    [Pg.118]    [Pg.148]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Production of isothiocyanates

© 2024 chempedia.info