Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoproterenol vascular effects

Cardiovascular effects of Infusion of norepinephrine, epinephrine, Isoproterenol, and dopamine in humans. Infusions were made intravenously during the time indicated by the broken lines. Heart rate is given in beats per minute, blood pressure in millimeters of mercury, and peripheral resistance in arterial blood pressure. (Reprinted with permission from Allwood MJ, Cobbald AF, and Ginsburg J. Peripheral vascular effects of noradrenaline, isopropyl-noradrenaline, and dopamine. Br Med Bull 19 132, 1963. Reproduced by permission of the Medical Department, The British Council. [Pg.102]

While the inhibition of noradrenaline re-uptake exerts predominantly an a-adrenergic effect, a selective jS-adrenergic effect can not be obtained by such an indirect mechanism. All selective /3-sympathomi-metics activate the receptors, P -, P2- or both sub-types, directly. The first pure jS-sympathomimetic in clinical use was isoproterenol which is structurally identical to adrenaline except the methyl-moiety at the N-position in the side-chain is replaced by an isopropyl-group. All effects produced by isoproterenol are due to either P -or 62-adrenoceptor stimulation tachycardia, increased stroke volume, decreased vascular resistance, broncho dilatation and, in pregnancy, uterus relaxation. The metabolic effects of isoproterenol are less pronounced than those of adrenaline. [Pg.305]

The effect of a given adrenomimetic drug on a particular type of effector cell depends on the receptor selectivity of the drug, the response characteristics of the effector cells, and the predominant type of adrenoceptor found on the cells. For example, the smooth muscle cells of many blood vessels have only or predominantly a-adrenoceptors. The interaction of compounds with these adrenoceptors initiates a chain of events in the vascular smooth muscle cells that leads to activation of the contractile process. Thus, norepinephrine and epinephrine, which have high affinities for a-adrenoceptors, cause the vascular muscle to contract and the blood vessels to constrict. Since bronchial smooth muscle contains p2-adrenoceptors, the response in this tissue elicited by the action of p2-adrenoceptor agonists is relaxation of smooth muscle cells. Epinephrine and isoproterenol, which have high affinities for p2-adrenoceptors, cause relaxation of bronchial smooth muscle. Norepinephrine has a lower affinity for p2-adrenoceptors and has relatively weak bronchiolar relaxing properties. [Pg.97]

The cardiovascular effects of norepinephrine, epinephrine, and isoproterenol are shown in Table 10.1. Differences in the action of these three catecholamines on various vascular beds are due both to the different... [Pg.100]

Epinephrine [ep ee NEF rin] is one of five catecholamines—epinephrine, norepinephrine, dopamine, dobutamine, and isoproterenol—commonly used in therapy. The first three catecholamines occur naturally, the latter two are synthetic compounds (see Figure 6.7). Epinephrine is synthesized from tyrosine in the adrenal medulla and released, along with small quantities of norepinephrine, into the blood stream. Epinephrine interacts with both a and p receptors. At low doses, p effects (vasodilation) on the vascular system predominate, whereas at high doses, a effects (vasoconstrictor) are strongest. [Pg.72]

Cardiotoxicity of primary amines (epinephrine, norepinephrine, isoproterenol) was noted earlier, and has been recognized for nearly 100 years. The vascular toxicity of these and related compounds has also recently been recognized. The effects seem to focus on medial cells of the artery wall, rather than on adventitial or endothelial cells. Early changes include loss of medial cells, mineralization, and loss of elastic fibers. Later there is a compensatory proliferation of intimal cells. The vascular toxicity of two related compounds is particularly striking. One of these compounds, allylamine, will be discussed near the end of this chapter. The second is )S-aminoproprionitrile ()S-APN), which is the active agent in the toxic sweet pea, Lathyrus odoratus. Consumption of flour derived from this plant results in lathyrism, a condition often seen in children and young... [Pg.482]

The relative role of P-AR subtypes in modulation of cardiac chronotropy was tested with the nonselective P-AR agonist isoproterenol administered to P-AR-KO mice. Wild-type mice show a robust 200 beats per min increase in heart rate associated with an approx 30 mmHg drop in mean blood pressure. In P,-AR-KO mice, the heart rate response is attenuated by approx 50% (28). This residual response is not mediated directly by cardiac P2-ARs but by P2-AR-mediated vasodilation. The hypotensive effect of activating vascular p2-ARs leads to a baroreflex-mediated withdrawal of vagal tone. The chronotropic response to isoproterenol in prAR-KO mice can be blocked by atropine, amuscarinic receptor antagonist (35). [Pg.271]

PHARMACOLOGICAL ACTIONS The major cardiovascular effects of isoproterenol (compared with Epi and NE) are illustrated in Eigure 10-2. Intravenous infusion of isoproterenol lowers peripheral vascular resistance, primarily in skeletal muscle but also in renal and mesenteric vascular beds. Diastolic pressure falls. Systolic blood pressure may remain unchanged or rise mean arterial pressure typically falls. Cardiac output increases due to the positive inotropic and chronotropic effects of the drug in the face of diminished peripheral vascular resistance. The cardiac effects of isoproterenol may lead to palpitations, sinus tachycardia, and more serious arrhythmias. [Pg.158]


See other pages where Isoproterenol vascular effects is mentioned: [Pg.256]    [Pg.256]    [Pg.477]    [Pg.256]    [Pg.242]    [Pg.439]    [Pg.129]    [Pg.353]    [Pg.358]    [Pg.87]    [Pg.93]    [Pg.108]    [Pg.184]    [Pg.183]    [Pg.83]    [Pg.92]    [Pg.274]    [Pg.394]    [Pg.78]    [Pg.175]    [Pg.211]    [Pg.152]    [Pg.438]    [Pg.439]    [Pg.86]    [Pg.252]    [Pg.56]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Isoproterenol

Vascular effects

© 2024 chempedia.info