Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomerization hydrogenolysis

Many other authors studied the catalytic activity of palladium in more complicated hydrogenation reactions because of being coupled with isomerization, hydrogenolysis, and dehydrogenation. In some cases the temperatures at which such reactions were investigated exceeded the critical temperature for coexistence of the (a + /3)-phases in the other case the hydrogen pressure was too low. Thus no hydride formation was possible and consequently no loss of catalytic activity due to this effect was observed. [Pg.267]

Most multipromoted catalysts have been described for the catalytic reforming of petroleum. For this process it is typical, that several reactions take place simultaneously dehydrogenation of cyclohexanes, dehydroisomerization of alkylcyclopentanes and dehydrocyclization of alkanes. Isomerization, hydrogenolysis, and hydrocracking are also involved in the process. [Pg.359]

Typical catalytic reactions that have been investigated, in some detail, using this approach include hydrocarbon conversion on platinum and modified platinum surfaces (isomerization, hydrogenolysis, hydrogenation, dehydrogenation and cyclization), dehydrosulfurization on molybdenum, ammonia synthesis on iron, and carbon monoxide hydrogenation on iron. [Pg.352]

Epoxide opening with nucleophiles occurs at the less substituted carbon atom of the oxlrane ting. Cataiytic hydrogenolysis yields the more substituted alcohol. The scheme below contains also an example for trons-dibromination of a C—C double bond followed by dehy-drobromination with strong base for overall conversion into a conjugated diene. The bicycKc tetraene then isomerizes spontaneously to the aromatic l,6-oxido[l0]annulene (E. Vogel, 1964). [Pg.123]

Various terminal allylic compounds are converted into l-alkenes at room temperature[362]. Regioselective hydrogenolysis with formate is used for the formation of an exo-methylene group from cyclic allylic compounds by the formal anti thermodynamic isomerization of internal double bonds to the exocyclic position[380]. Selective conversion of myrtenyl formate (579) into /9-pinene is an example. The allylic sulfone 580 and the allylic nitro compound... [Pg.368]

As a further application of the reaction, the conversion of an endocyclic double bond to an c.xo-methylene is possible[382]. The epoxidation of an cWo-alkene followed by diethylaluminum amide-mediated isomerization affords the allylic alcohol 583 with an exo double bond[383]. The hydroxy group is eliminated selectively by Pd-catalyzed hydrogenolysis after converting it into allylic formate, yielding the c.ro-methylene compound 584. The conversion of carvone (585) into l,3-disiloxy-4-methylenecyclohexane (586) is an example[382]. [Pg.369]

Isomerization and Hydrogenolysis. lsomeri2ation of propylene oxide to propionaldehyde and acetone occurs over a variety of catalysts, eg, pumice, siUca gel, sodium or potassium alum, and 2eohtes (80,81). Stronger acid catalysts favor acetone over propionaldehyde (81). AHyl alcohol yields of 90% are obtained from use of a supported lithium phosphate catalyst (82). [Pg.135]

The structure of 82 was established by alkaline ring cleavage to benzilic acid amide and by hydrogenolysis to (C6H5)2CH—CONH— COCfiHs. These reactions also served to eliminate 83 as the structure of the 169° compound. The other possible isomeric structure, (C6H5)2C(CN)0C0C6H5, which could have formed after 0-acylation, was ruled out by its independent synthesis from bromodiphenyl-acetonitrile and silver benzoate. [Pg.106]

Another example is the hydrogenation of the homoallylic eompound 4-methyl-3-cyclohexenyl ethyl ether to a mixture of 4-methylcyclohexyl ethyl ether and methylcyclohexane. The extent of hydrogenolysis depends on both the isomerizing and the hydrogenolyzing tendencies of the catalysts. With unsupported metals in ethanol, the percent hydrogenolysis decreased in the order palladium (62.6%), rhodium (23 6%), platinum (7.1%), iridium (3.9%), ruthenium (3.0%) (S3). [Pg.35]

Homoallylic systems may isomerize under hydrogenation conditions to allylic systems, causing hydrogenolysis to occur when it would not have been expected (39b,45a-45c). In these cases, if hydrogenolysis is unwanted, it is best to avoid those catalysts and conditions that favor isomerization. Double-bond migration to an allylic position may occur even if the double bond is required to leave a tetrasubstituted position (26a). [Pg.168]

Asymmetric hydrogenolysis of epoxides has received relatively little attention despite the utility such processes might hold for the preparation of chiral secondary alcohol products. Chan et al. showed that epoxysuccinate disodium salt was reduced by use of a rhodium norbornadiene catalyst in methanol/water at room temperature to give the corresponding secondary alcohol in 62% ee (Scheme 7.31) [58]. Reduction with D2 afforded a labeled product consistent with direct epoxide C-O bond cleavage and no isomerization to the ketone or enol before reduction. [Pg.249]

The reaction scheme is rather complex also in the case of the oxidation of o-xylene (41a, 87a), of the oxidative dehydrogenation of n-butenes over bismuth-molybdenum catalyst (87b), or of ethylbenzene on aluminum oxide catalysts (87c), in the hydrogenolysis of glucose (87d) over Ni-kieselguhr or of n-butane on a nickel on silica catalyst (87e), and in the hydrogenation of succinimide in isopropyl alcohol on Ni-Al2Oa catalyst (87f) or of acetophenone on Rh-Al203 catalyst (87g). Decomposition of n-and sec-butyl acetates on synthetic zeolites accompanied by the isomerization of the formed butenes has also been the subject of a kinetic study (87h). [Pg.24]

A brief summary of current and potential processes is given in Table 8.1. As shown in the table, most of the reactions are hydrolysis, hydrogenolysis, hydration, hydrogenation, oxidation, and isomerization reactions, where catalysis plays a key role. Particularly, the role of heterogeneous catalysts has increased in this connection in recent years therefore, this chapter concerns mostly the application of heterogeneous solid catalysts in the transformation of biomass. An extensive review of various chemicals originating from nature is provided by Maki-Arvela et al. [33]. [Pg.167]

Figure 4. Selectivity in isomerization, dehydrocycllzation and hydrogenolysis (cracking) of Pt/Cu alloys (on Si02). Bulk composition of alloys (% Pt) indicated. (Reproduced with permission from Ref.30. Chem.Soc.London)... Figure 4. Selectivity in isomerization, dehydrocycllzation and hydrogenolysis (cracking) of Pt/Cu alloys (on Si02). Bulk composition of alloys (% Pt) indicated. (Reproduced with permission from Ref.30. Chem.Soc.London)...
The present characterization studies have motivated us to investigate in the future the optimum edeination and reduction temperatures to maximize the isomerization pathway, while keeping coke deposition and hydrogenolysis to a minimum. Our results suggest that compromises are expected to be made to achieve those goals. [Pg.550]

Gault and coworkers [ 149] have observed that the distribution of products obtained by hydrogenolysis and isomerization of methylcyclopentane was the same as those obtained with hexane. They proposed two competing mechanisms a selective mechanism implying an a, a, p, j0-tetra-adsorbed species and a non-selective mechanism implying coordinated olefin and bis-carbene intermediates (Scheme 38). [Pg.196]

Other types of non-micro-channel, non-micro-flow micro reactors were used for catalyst development and testing [51, 52]. A computer-based micro-reactor system was described for investigating heterogeneously catalyzed gas-phase reactions [52]. The micro reactor is a Pyrex glass tube of 8 mm inner diameter and can be operated up to 500 °C and 1 bar. The reactor inner volume is 5-10 ml, the loop cycle is 0.9 ml, and the pump volume adds a further 9 ml. The reactor was used for isomerization of neopentane and n-pentane and the hydrogenolysis of isobutane, n-butane, propane, ethane, and methane at Pt with a catalyst. [Pg.18]

The main issue of the book is application of nanosized particles in both homogeneous and heterogeneous catalysis. A variety of reactions catalyzed by metal colloids or supported nanosized metals is discussed. The most intriguing reaction seems to be ethane hydrogenolysis catalyzed by Pt clusters on porous carrier and studied by G. A. Somorjai and his group. Another challenging observation by this group is shape isomerization of Pt metal particles affected by the addition of silver ions. [Pg.465]


See other pages where Isomerization hydrogenolysis is mentioned: [Pg.191]    [Pg.180]    [Pg.145]    [Pg.509]    [Pg.76]    [Pg.164]    [Pg.76]    [Pg.164]    [Pg.89]    [Pg.233]    [Pg.1383]    [Pg.465]    [Pg.397]    [Pg.191]    [Pg.180]    [Pg.145]    [Pg.509]    [Pg.76]    [Pg.164]    [Pg.76]    [Pg.164]    [Pg.89]    [Pg.233]    [Pg.1383]    [Pg.465]    [Pg.397]    [Pg.101]    [Pg.376]    [Pg.477]    [Pg.124]    [Pg.289]    [Pg.666]    [Pg.191]    [Pg.59]    [Pg.123]    [Pg.163]    [Pg.164]    [Pg.274]    [Pg.277]    [Pg.544]    [Pg.544]    [Pg.546]    [Pg.546]    [Pg.549]    [Pg.195]    [Pg.159]   


SEARCH



Hydrogenolysis versus isomerization, selectivity

Isomerization hydrogenolysis and

© 2024 chempedia.info