Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isobutene, addition

MTBE manufacture from FCC-produced butenes can at least be doubled by skeletal isomerisation of normal butenes to isobutene. Addition of ZSM-5 to the FCC catalyst inventory may be applied to quadruple the MTBE output. [Pg.31]

A second family is based on isobutene polymers (PIB) having molecular weights from 600 to 2000 that are equally important raw materials for detergent additives. So as to render them reactive with the hydrophilic part, they can be chlorinated or condensed with the maleic anhydride. A third way is based on the utilization of polypropylphenols of molecular weights between 600 and 3000. [Pg.347]

Ethers result from the selective addition of methanol or ethanol to the isobutene contained in C4 olefin fractions. Ethers are used as components in gasoline because of their high octane blending value (RON and MON). [Pg.374]

If this is not the case, additional isobutene must be introduced and the mixture be allowed to stand for a longer period. [Pg.233]

The free phosphine is Hberated upon the removal of the acid catalyst with water. Tri-/-butylphosphine [998-40-3] is prepared by the acid-cataly2ed addition of isobutene to phosphine. [Pg.379]

Methyl tert-Butylluther Methyl /-butyl ether (MTBE) is an increasingly important fuel additive. Platinum—tin and other PGM catalysts are used for the dehydrogenation of isobutane to isobutene, an intermediate step in MTBE manufacture. [Pg.173]

Sulfurized olefins (S2CI2 plus isobutene) are further reacted with S and Na2S to give products useful as extreme pressure lubricant additives (144,145). The reaction of unsaturated natural oils with sulfur monochloride gives resinous products known as Factice, which are useful as art-gum erasers and mbber additives (146,147). The addition reaction of sulfur monochloride with unsaturated polymers, eg, natural mbber, produces cross-links and thus serves as a means for vulcanizing mbber at moderate temperatures. The photochemical cross-linking of polyethylene has also been reported (148). [Pg.138]

Butylated Hydroxyanisole. 2- and 3-/ i -Butyl-4-methoxyphenol (butylated hydroxyanisole (BHA)) is prepared from 4-methoxyphenol and tert-huty alcohol over siUca or alumina at 150°C or from hydroquinone and tert-huty alcohol or isobutene, using an acid catalyst and then methylating. It is widely used in all types of foods such as butter, lard, and other fats, meats, cereals, baked goods, candies, and beer as an antioxidant (see Antioxidants Eood additives). Its antioxidant properties are not lost during cooking so that flour, fats, and other BHA-stabiLized ingredients may be used to produce stabilized products. [Pg.429]

Methyl-te/t-butyl ether, a gasoline additive, is made from isobutene and methanol with distillation in a bed of acidic ion-exchange resin catalyst. The MTBE goes to the bottom with purity above 99 percent and unreacted materials overhead. [Pg.707]

In addition there is the possibility that other olefins may generate polymers with low Tg s which show little or no crystallinity at room temperature and are therefore potentially elastomeric. One commercial example is butyl rubber (designated HR), a copolymer of isobutene with a small amount of isoprene. [Pg.299]

Some types of reactions involving gases that have been studied in IFs are hydrogenations [16, 25-37 ], oxidations [38, 39], and hydroformylations [25, 40 5]. In addition, some dimerizations and allcylations may involve the dissolution of condensable gases (e.g., ethylene, propylene, isobutene) in the IF solvent [46-50]. [Pg.89]

The industrial reactions involving cis- and trans-2-butene are the same and produce the same products. There are also addition reactions where both 1-butene and 2-butene give the same product. For this reason, it is economically feasible to isomerize 1-butene to 2-butene (cis and trans) and then separate the mixture. The isomerization reaction yields two streams, one of 2-butene and the other of isobutene, which are separated by fractional distillation, each with a purity of 80-90%. Table 2-3 shows the boiling points of the different butene isomers. [Pg.34]

Addition of metallic oxides to isobutene polymerized by high energy radiation leads to a spectacular increase in the yield.313. It seems that some ions are stabilized by complexing with the surface of the oxide and such an interaction prevents their recombination with the gegen-ions. These observations confirm therefore the suggested cause of inefficient ionic polymerization in systems exposed to ionizing radiation. [Pg.157]

Additional adsorption sites are provided on open metal sites, when available. [Cu3(BTC)2] is performant in the selective adsorption and separation of olefinic compounds. The highly relevant separations of propene from propane and of isobutene from isobutane have been accomplished with separation factors of 2.0 and 2.1, respectively [101, 102]. [Cu3(BTC)2] also selectively takes up pentene isomers from aliphatic solvent in liquid phase, and even discriminates between a series of cis- and trans-olefin isomer mixtures with varying chain length, always preferring a double bond in cis-position. This behavior is ascribed to tt -complexation with the open Cu sites [100]. [Pg.88]

Upon examining the data for the reactions of all four butene isomers (Fig. 37), the most striking observation is that the data for all four isomers are quite similar, except that there is no YH2 formed from isobutene. In addition, the branching ratios for each isomer are similar, except that 4>ych2 OyCiHe, is approximately a factor of two greater for isobutene than for the other isomers, and for propene, YCH2 is a much more important channel than is YH2 (Fig. 40), a situation that is exactly the opposite to that for the butene reactions (Fig. 37). [Pg.260]

Diphenylethylene has been reported to add to several olefins/61 The cross-addition of this olefin with isobutene yields (41) in 63% yield ... [Pg.530]

The condensation of acetone can also occur over acidic sites as shown by a number of authors [1,9], Generally, when this occurs other products are formed such as isobutene and acetic acid, by the cracking of DAA. Additionally mesitylene can be formed by the internal 2,7-aldol condensation of 4,6-dimethylhepta-3,5-dien-2-one which is in turn obtained by the aldol condensation of MO with a deprotonated acetone molecule [7, 8], As these species are not observed we can concluded that any acidic sites on the silica support are playing no significant role in the condensation of acetone. [Pg.368]

Alkenes are scavengers that are able to differentiate between carbenes (cycloaddition) and carbocations (electrophilic addition). The reactions of phenyl-carbene (117) with equimolar mixtures of methanol and alkenes afforded phenylcyclopropanes (120) and benzyl methyl ether (121) as the major products (Scheme 24).51 Electrophilic addition of the benzyl cation (118) to alkenes, leading to 122 and 123 by way of 119, was a minor route (ca. 6%). Isobutene and enol ethers gave similar results. The overall contribution of 118 must be more than 6% as (part of) the ether 121 also originates from 118. Alcohols and enol ethers react with diarylcarbenium ions at about the same rates (ca. 109 M-1 s-1), somewhat faster than alkenes (ca. 108 M-1 s-1).52 By extrapolation, diffusion-controlled rates and indiscriminate reactions are expected for the free (solvated) benzyl cation (118). In support of this notion, the product distributions in Scheme 24 only respond slightly to the nature of the n bond (alkene vs. enol ether). The formation of free benzyl cations from phenylcarbene and methanol is thus estimated to be in the range of 10-15%. However, the major route to the benzyl ether 121, whether by ion-pair collapse or by way of an ylide, cannot be identified. [Pg.15]

In addition, 18-19% of isobutene and chloroacetylene formed via fragmentation. Photolysis of the diazirine in up to 9 M trimethylethylene in pentane led to a sharp decrease in 27 and 28 (to 32% and 8.5%), along with 40% of cyclopropanes formed via the capture of 19. However, the yield of isobutene and chloroacetylene was unchanged, indicating that these products did not stem from the carbene, but arose directly by fragmentation of its excited diazirine precursor.45... [Pg.64]

C4 Butesom [Butene isomerization] A process for isomerizing linear butenes to isobutene, catalyzed by a zeolite. The isobutene is intended for use as an intermediate in the production of ethers for use as fuel additives. Developed by UOP in 1992. See also C5 Pentesom. [Pg.57]

Hydride transfer from alkenes was also proposed to occur during sulfuric acid-catalyzed alkylation modified with anthracene (77). Then the butene loses a hydride and forms a cyclic carbocation intermediate, yielding—on reaction with isobutene—trimethylpentyl cations. This conclusion was drawn from the observation of a sharp decrease in 2,2,3-TMP selectivity upon addition of anthracene to the acid. [Pg.268]

Heating pure TBMS, TBS and TBSS films at 130 C gave no volatile products. Pyrolysis at 725°C gave rise to both deprotection (as determined by the evolution of isobutene and carbon dioxide), and depolymerization to afford the respective monomers, sulfur dioxide, 4-hydroxystyrene, or 4-hydroxy-a-methylstyrene. The compounds, 4-hydroxystyrene and 4-hydroxy-a-methylstyrene, were identified on the basis of their mass spectra, which were consistent with those reported in the literature for these materials (22,23). Additionally, TGA analysis confirmed that all three polymers undergo complete volatilization upon heating to >400 C. [Pg.44]

In 1965 Chmelir proposed another mechanism for the polymerisation of isobutene catalysed by AlBr3 in heptane solution. If the reaction system is dried it is found that upon addition of BF3 or TiCl4, no polymerisation takes place and only addition of water can bring about polymerisation. [Pg.246]

While the formation of multiadducts in the above reactions clearly demonstrates the difficulties confronted in terms of controlling the reaction, the issue of whether C6o and C70 undergo addition by carbon electrophiles is of great interest, because such a reaction would provide a useful method for carbon-carbon bond formation for the derivatization of fiillerenes. Initial attempts to test the possibility of electrophilic alkylation of C6o with terf-butyl chloride and AICI3 gave only polymeric products, probably formed via isobutene, indicating the insufficient reactivity of C60 towards terf-butyl cation. [Pg.249]

The necessity for a co-catalyst with BF3 was subsequently confirmed rigorously by Evans and Meadows [8-10] by means of an all-glass vacuum apparatus which established a characteristic style of experimentation which I adopted and adapted. They showed that under rigorously anhydrous conditions isobutene and BF3 could be mixed without the isobutene polymerising, and that the addition of water did initiate a polymerisation. Fairbrother and Frith [11] reported very briefly that the polymerisation of isobutene by (Ta-Nb)F5 required a co-catalyst - without stating which one they used. [Pg.22]


See other pages where Isobutene, addition is mentioned: [Pg.123]    [Pg.123]    [Pg.199]    [Pg.415]    [Pg.480]    [Pg.273]    [Pg.321]    [Pg.323]    [Pg.149]    [Pg.180]    [Pg.111]    [Pg.502]    [Pg.142]    [Pg.83]    [Pg.65]    [Pg.53]    [Pg.226]    [Pg.80]    [Pg.22]    [Pg.22]    [Pg.18]    [Pg.147]    [Pg.46]    [Pg.475]   
See also in sourсe #XX -- [ Pg.2 , Pg.41 , Pg.43 ]




SEARCH



Isobutene

Isobutene carboxylic acid addition

Isobutenes

© 2024 chempedia.info