Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

IS elements

Organic compounds are a major constituent of the FPM at all sites. The major sources of OC are combustion and atmospheric reactions involving gaseous VOCs. As is the case with VOCs, there are hundreds of different OC compounds in the atmosphere. A minor but ubiquitous aerosol constituent is elemental carbon. EC is the nonorganic, black constituent of soot. Combustion and pyrolysis are the only processes that produce EC, and diesel engines and wood burning are the most significant sources. [Pg.374]

In the direct insertion technique, the sample (liquid or powder) is inserted into the plasma in a graphite, tantalum, or tungsten probe. If the sample is a liquid, the probe is raised to a location just below the bottom of the plasma, until it is dry. Then the probe is moved upward into the plasma. Emission intensities must be measured with time resolution because the signal is transient and its time dependence is element dependent, due to selective volatilization of the sample. The intensity-time behavior depends on the sample, probe material, and the shape and location of the probe. The main limitations of this technique are a time-dependent background and sample heterogeneity-limited precision. Currently, no commercial instruments using direct sample insertion are available, although both manual and h ly automated systems have been described. ... [Pg.639]

In 1934 Fermi decided to bombard uranium with neutrons in an attempt to produce transuranic elements, that is, elements beyond uranium, which is number 92 in the periodic table. He thought for a while that he had succeeded, since unstable atoms were produced that did not seem to correspond to any known radioactive isotope. I le was wrong in this conjecture, but the research itself would eventually turn out to be of momentous importance both for physics and for world history, and worthy of the 1938 Nobel Pri2e in Physics. [Pg.499]

The difference is caused by the higher nuclear charge of magnesium. Magnesium is element 12, hence it has twelve protons in the nucleus, com-... [Pg.270]

What I hope to have added to the discussion has been a philosophical reflection on the nature of the concept of element and in particular an emphasis on elements in the sense of basic substances rather than just simple substances. The view of elements as basic substances, is one with a long history. The term is due to Fritz Paneth, the prominent twentieth century radio-chemist. This sense of the term element refers to the underlying reality that supports element-hood or is prior to the more familiar sense of an element as a simple substance. Elements as basic substances are said to have no properties as such although they act as the bearers of properties. I suppose one can think of it as a substratum for the elements. Moreover, as Paneth and before him Mendeleev among others stressed, it is elements as basic substances rather than as simple substances that are summarized by the periodic table of the elements. This notion can easily be appreciated when it is realized that carbon, for example, occurs in three main allotropes of diamond, graphite and buckminsterfullenes. But the element carbon, which takes its place in the periodic system, is none of these three simple substances but the more abstract concept of carbon as a basic substance. [Pg.10]

Germanium is element 32. Consult Figure 8 to determine that Ge is in Group 14, row 4 of the p block ... [Pg.518]

The advantages of XAS are that it is element specific, can be used in situ, and yields both chemical and structural information. Also, the theory is very well developed. The main disadvantage is the need to use a synchrotron facility. [Pg.484]

Chapter 8 covers components that are used to make binary chemical weapons. The chapter covers three main components that are used to make GB2 and VX2 (the binary equivalents of GB and VX). Only those materials not easily found elsewhere are listed. For example, one of the components for binary VX2 is elemental sulfur (designated NE), the information about sulfur is readily available and is not dealt with herein. [Pg.229]

A study of photosynthetic organisms other than green plants has revealed that certain bacteria, such as the purple sulfur bacteria, utilize H2S instead of H20 as a reductant in photosynthesis. The product obtained is elemental sulfur instead of oxygen ... [Pg.282]

In the fully cyclic condition the system is element neutral. [Pg.75]

To determine the BEs (Eq. 1) of different electrons in the atom by XPS, one measures the KE of the ejected electrons, knowing the excitation energy, hv, and the work function, electronic structure of the solid, consisting of both localized core states (core line spectra) and delocalized valence states (valence band spectra) can be mapped. The information is element-specific, quantitative, and chemically sensitive. Core line spectra consist of discrete peaks representing orbital BE values, which depend on the chemical environment of a particular element, and whose intensity depends on the concentration of the element. Valence band spectra consist of electronic states associated with bonding interactions between the... [Pg.94]

SulFerox A process for removing hydrogen sulfide and organic sulfur compounds from hydrocarbons, similar to the Stretford process but using an aqueous solution containing chelated iron and proprietaiy additives. The product is elemental sulfur. The basic reactions are ... [Pg.258]

The enthalpy of formation can be determined theoretically and experimentally. The theoretical methods can be defined as those which use bond contributions and the ones which use group contributions. The bond contribution techniques can be characterized as zero, first, second, or higher order methods, where zero is elemental composition only, first adds the type of bonding, second adds the next bonded element, and higher adds the next type of bond. A survey of typical theoretical methods is shown in Table 2.6. [Pg.34]

The best selling textbook of physical chemistry in the world is undoubtedly Atkins s Physical Chemistry. The latest edition is the seventh by P. W. Atkins and Julio de Paula, Oxford University Press, Oxford, 2002. Many students will find it rather mathematical, and its treatment is certainly high brow. Its Tittle brother is Elements of Physical Chemistry (third edition), P. W. Atkins, Oxford University Press, Oxford, 2001, and is intended to overcome these perceived difficulties by limiting the scope and level of its parent text. Both are thorough and authoritative. [Pg.533]

For any as-is element, ask, Why is it so Abstract the collaborations to single use cases. Abstract groups to single objects (for example, individual person roles to departments). Specify abstract use cases with postconditions rather than sequences. [Pg.567]

Figure 4.8. The sulfur cycle where S° is elemental sulfur, H2S is hydrogen sulfide, S2032" is thiosulfate, SO32" is sulfite, SO/- is sulfate, R-OSO3H represents a sulfate ester, R-SO3H a sulfonic acid, R-S-R a thioether, and R-SH a thiol. (Adapted from Coyne MS. Soil Microbiology An Experimental Approach. Boston Delmar Publishers 1999.)... Figure 4.8. The sulfur cycle where S° is elemental sulfur, H2S is hydrogen sulfide, S2032" is thiosulfate, SO32" is sulfite, SO/- is sulfate, R-OSO3H represents a sulfate ester, R-SO3H a sulfonic acid, R-S-R a thioether, and R-SH a thiol. (Adapted from Coyne MS. Soil Microbiology An Experimental Approach. Boston Delmar Publishers 1999.)...
In a method described by Bates and Carpenter [8] for the characterization of organosulphur compounds in the lipophilic extracts of marine sediments these workers showed that the main interference is elemental sulphur (S8). Techniques for its elimination are discussed. Saponification of the initial extract is shown to create organosulphur compounds. Activated copper removes S8 from an extract and appears neither to create nor to alter organosulphur compounds. However, mercaptans and most disulphides are removed by the copper column. The extraction efficiency of several other classes of sulphur compounds is 80-90%. Extracts are analyzed with a glass capillary gas chromatograph equipped with a flame photometric detector. Detection limit is lg S and precision 10%. [Pg.198]

The non-metals carbon, nitrogen and oxygen are all essential for man, as is element number 9, fluorine. Some of the biological effects of the important intracellular messenger, nitric oxide, NO, which is derived from the amino acid arginine, are illustrated in... [Pg.3]

While the extracts of SPMDs are generally less difficult to purify than are extracts of tissue or sediment, certain interferences can be problematic for some types of analyses. The most important of these potential interferences are codialyzed polyethylene oligomers (i.e., the so-called polyethylene waxes), oleic acid, and methyl oleate. The latter two interferences are residual from the synthesis of the triolein. Also, oxidation products of triolein may be present in dialysates of SPMDs that have been exposed (especially in the presence of light) to air for periods exceeding 30 d. For a standard 1-mL triolein SPMD, the mass of all these interferences in dialysates is generally <30 mg or about 6 mg g of SPMD (Huckins et al., 1996). Another potential interference is elemental sulfur, which is often present in sediment pore water and is concentrated by SPMDs. However, both polyethylene waxes and elemental sulfur are readily removed using the previously described SEC procedure. [Pg.111]

Abstract The sodium sulphide-induced collectorless flotation of several minerals are first introduced in this chapter. The results obtained are that sodium sulphide-induced collectorless flotation of sulphide minerals is strong for pyrite while galena, jamesonite and chalcopyrite have no sodium sulphide-induced collectorless flotability. And the nature of hydrophobic entity is then determined through J h-pH diagram and cyclic voltammogram, which is element sulphur. It is further proved widi the results of surface analysis and sulphur-extract. In the end, the self-induced and sodium sulphide-induced collectorless flotations are compared. And it is found that the order is just reverse in sodium sulphide-induced flotation to the one in self-induced collectorless flotation. [Pg.53]

Another traditional method used for polymer support characterization is elemental analysis. Its use as an accurate quantitative technique for monitoring solid-phase reactions has also been demonstrated [146]. Microanalysis can be extremely valuable if a solid-phase reaction results in the loss or introduction of a heteroatom (usually N, S, P or halogen). In addition, this method can be used for determination of the loading level of a functional group (e. g. usually calculated directly from the observed microanalytical data). For example, in many cases, the displacement of chloride from Merrifield resin has been used as a guide to determine the yield of the solid-phase reaction. [Pg.34]

However, the Lord Voldemort of elements is phosphoms. The whole story has been captured by John Emsley in The Thirteenth Element The Sordid Tale of Murder, Fire, and Phosphorus. Note that the identification of phosphoms as the 13 th element refers to the fact that it was the 13th one to be isolated in pure form. In the periodic table of the elements, phosphorus is element number 15. [Pg.93]

Most minerals occur in a variety of morphologies. Although it is not exhaustive, the list we recorded as occurring in fibrous form (Appendix 1) contains more than 350 entries, each with a reference. The format follows that proposed in Dana s System of Mineralogy, (Palache, et al., 1944), one of the standard references in the field. The names of fibrous minerals are alphabetically arranged within each chemical group that is, elements, oxides, hydroxides, carbonates, sulfates, phosphates, and so on. A similar, parallel system has been adopted for the list of synthetic fibers (Appendix 2). The list of synthetics includes glassy fibers produced from natural materials, as well as whiskers. [Pg.16]

Late 1800s The lead chamber process for manufacturing sulfuric acid was prevalent in this period. Arsenic was a common contaminant in the pyrites used as a source of sulfur for this process. Now the cleaner contact process is used and most of the raw material is elemental sulfur. [Pg.480]


See other pages where IS elements is mentioned: [Pg.1756]    [Pg.196]    [Pg.280]    [Pg.332]    [Pg.1568]    [Pg.480]    [Pg.63]    [Pg.312]    [Pg.312]    [Pg.313]    [Pg.86]    [Pg.253]    [Pg.726]    [Pg.66]    [Pg.558]    [Pg.346]    [Pg.480]    [Pg.123]    [Pg.166]    [Pg.257]    [Pg.246]    [Pg.21]    [Pg.393]    [Pg.244]    [Pg.204]    [Pg.176]   
See also in sourсe #XX -- [ Pg.137 , Pg.139 ]




SEARCH



Planning Is an Essential Business Element

Some Transposable Genetic Elements Encode a Reverse Transcriptase That Is Crucial to the Transposition Process

The Warburg Impedance is a Constant-Phase Element

The alpha (a) helix is an important element of secondary structure

Trace Element Analysis is Possible with the Proton Probes

Type Is Determined by Transposable Elements in Yeast

What Is an Element

What is a Transition Element

What is the atomic number of an element

© 2024 chempedia.info