Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt irradiation

Cobalt exists in valence states from 0 to 5, with the most stable (4-2 and - -3) being most common. While there is only one stable isotope of cobalt, there are a number of unstable isotopes. Two of these, cobalt-60 and cobalt-57, are in use commercially. Cobalt-60 is used for cancer treatment and for food irradiation. Cobalt-57 has research applications. [Pg.631]

The influence of y irradiation (cobalt-60, at 25 °C) upon the decomposition of LS has been published by Flanagan [41]. He observed that LS is many times more... [Pg.140]

In order to minimize the production of cobaIt-60 due to neutron irradiation, cobalt should be removed from the primary system during the modification of piping systems and during maintenance where this is appropriate and feasible. Components such as valve seats and seat weld materials containing cobalt should be replaced to the extent possible with materials with no or low cobalt content. [Pg.31]

Oxidation. Acetaldehyde is readily oxidised with oxygen or air to acetic acid, acetic anhydride, and peracetic acid (see Acetic acid and derivatives). The principal product depends on the reaction conditions. Acetic acid [64-19-7] may be produced commercially by the Hquid-phase oxidation of acetaldehyde at 65°C using cobalt or manganese acetate dissolved in acetic acid as a catalyst (34). Liquid-phase oxidation in the presence of mixed acetates of copper and cobalt yields acetic anhydride [108-24-7] (35). Peroxyacetic acid or a perester is beheved to be the precursor in both syntheses. There are two commercial processes for the production of peracetic acid [79-21 -0]. Low temperature oxidation of acetaldehyde in the presence of metal salts, ultraviolet irradiation, or osone yields acetaldehyde monoperacetate, which can be decomposed to peracetic acid and acetaldehyde (36). Peracetic acid can also be formed directiy by Hquid-phase oxidation at 5—50°C with a cobalt salt catalyst (37) (see Peroxides and peroxy compounds). Nitric acid oxidation of acetaldehyde yields glyoxal [107-22-2] (38,39). Oxidations of /)-xylene to terephthaHc acid [100-21-0] and of ethanol to acetic acid are activated by acetaldehyde (40,41). [Pg.50]

Irradiation. Although no irradiation systems for pasteurization have been approved by the U.S. Food and Dmg Administration, milk can be pasteurized or sterilized by P tays produced by an electron accelerator or y-rays produced by cobalt-60. Bacteria and enzymes in milk are more resistant to irradiation than higher life forms. For pasteurization, 5000—7500 Gy (500,000—750,000 tad) are requited, and for inactivating enzymes at least 20,000 Gy (2,000,000 rad). Much lower radiation, about 70 Gy (7000 tad), causes an off-flavor. A combination of heat treatment and irradiation may prove to be the most acceptable approach. [Pg.360]

Among other isotopes produced at SRP were uranium-233 for breeder research, cobalt-60 [10198-40-0] for irradiators, plutonium-238 for spacecraft such as V ojager 2in.d lunar research power suppHes, and califomium-252 as a fast neutron source. The accomplishments of Du Pont at SRP are well chronicled (53). [Pg.219]

Water as coolant in a nuclear reactor is rendered radioactive by neutron irradiation of corrosion products of materials used in reactor constmction. Key nucHdes and the half-Hves in addition to cobalt-60 are nickel-63 [13981 -37-8] (100 yr), niobium-94 [14681-63-1] (2.4 x 10 yr), and nickel-59 [14336-70-0] (7.6 x lO" yr). Occasionally small leaks in fuel rods allow fission products to enter the cooling water. Cleanup of the water results in LLW. Another source of waste is the residue from appHcations of radionucHdes in medical diagnosis, treatment, research, and industry. Many of these radionucHdes are produced in nuclear reactors, especially in Canada. [Pg.228]

The resins are commonly cured by the use of peroxide with or without cobalt accelerators, depending on whether the hardening is to be carried out at room temperature or at some elevated temperature. Electron irradiation curing, which can be completed within a few seconds, has, however, been introduced for coatings on large flat surfaces such as plywood, chipboard and metal panels. [Pg.742]

Irradiation Conditions. The gamma (cobalt-60) radiation facility and the source calibration are described by Holm and Jarrett (4). Irradiation doses were 3-4 Mrad and 6-7.5 Mrad at 9 X 102 rads per second for the screening study. Irradiation temperatures were 5, —30, and — 90°C. The gamma source was calibrated with the ferrous sulfate-cupric sulfate dosimeter. [Pg.30]

The rate of isotopic exchange in the solid state, between cobalt in the cation and in the anion of [60Co(H2O)6] [Co(edta)]2 4 H20, was increased [1144] by irradiation (100 Mrad) of the reactant. It was concluded that exchange occurred via vacancies, rather than through motion of a ring of cobalt atoms, one from a cationic site and the other from a neighbouring anionic site. [Pg.239]

On photolyzing CoziCOg in the matrix (20), a number of photoproducts could be observed. The results of these experiments are summarized in Scheme 4, which illustrates the various species formed. Of particular interest is the formation of Co2(CO)7 on irradiation of Co2(CO)g in CO (254 nm), as this species had not been characterized in the metal-atom study of Hanlan et al. (129). Passage of Co2(CO)g over an active, cobalt-metal surface before matrix isolation causes complete decomposition. On using a less active catalyst, the IR spectrum of Co(CO)4 could be observed. An absorption due to a second decomposition product, possibly Co2(CO)g, was also noted. [Pg.134]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

Lehn and Ziessel166 have also developed systems for the photochemical reduction of C02. These systems are similar to those represented by Fig. 18. Visible-light irradiation of C02-saturated aqueous acetonitrile solutions containing Ru(bpy)2+ as a photosensitizer, cobalt(II) chloride as an electron acceptor, and triethyl-amine as a sacrificial electron donor gave carbon monoxide and... [Pg.384]

This may be of significance in connetion with the biosynthesis of acetate from carbon dioxide, because the next step, the fixation of carbon monoxide, was demonstrated by B. Krautler. He irradiated methyl cobalamin under Co at 30 atm and obtained the acyl cobalamin as the product. Interestingly, a radical mechanism was iproposed, involving the reaction of methyl radicals with CO to give acyl radicals, which then recombine with the cobalt complex /55/. [Pg.150]

One of the most selective hydroformylation catalysts was obtained when cobalt acetate was irradiated in the presence of an excess of a phosphine, with synthesis gas at 80 atm, in methanol as the solvent. Propylene was hydroformylated with this catalyst to give butyraldehyde with an n/i ratio of more than 99/1 /10/. In the absence of phosphine, the cobalt acetate forms a more active catalyst which is, however, less selective for straight chain products /23/. [Pg.151]

On irradiation it is converted to the cobalt carbonyl hydride 8, as discussed above. The hydride then reacts with the olefin in a reaction sequence containing only thermal steps /10/. [Pg.151]

Rhodium and cobalt carbonyls have long been known as thermally active hydroformylation catalysts. With thermal activation alone, however, they require higher temperatures and pressures than in the photocatalytic reaction. Iron carbonyl, on the other hand, is a poor hydroformylation catalyst at all temperatures under thermal activation. When irradiated under synthesis gas at 100 atm, the iron carbonyl catalyzes the hydroformylation of terminal olefins even at room temperatures, as was first discovered by P. Krusic. ESR studies suggested the formation of HFe9(C0) radicals as the active catalyst, /25, 26/. Our own results support this idea, 111,28/. Light is necessary to start the hydroformylation of 1-octene with the iron carbonyl catalyst. Once initiated, the reaction proceeds even in the... [Pg.152]

The hypothesis that the cobalt carbonyl radicals are the carriers of catalytic activity was disproved by a high pressure photochemistry experiment /32/, in which the Co(CO), radical was prepared under hydroformylation conditions by photolysis of dicobalt octacarbonyl in hydrocarbon solvents. The catalytic reaction was not enhanced by the irradiation, as would be expected if the radicals were the active catalyst. On the contrary, the Co(C0)4 radicals were found to inhibit the hydroformylation. They initiate the decomposition of the real active catalyst, HCo(C0)4, in a radical chain process /32, 33/. [Pg.154]

A number of cobalt carbonyl derivatives have been subjected to y-irradiation and subsequent EPR spectroscopic investigation. [Pg.187]

Nickel carbonyl radicals show an even greater tendency than cobalt carbonyls to cluster in a krypton matrix. Three binuclear nickel carbonyls have been detected by EPR spectroscopy in the products of y-irradiated Ni(CO)4 in Kr, yet no mononuclear species has been positively identified (65). 13C hyperfine structure has... [Pg.188]

As for the relative suitability of an electron beam (EB) facility vis-a-vis a cobalt-60 gamma facility, a key point is that although the ultimate chemistry is nearly identical in both cases, there is a notable difference in the penetration of the radiations. Another point is that the large capacity and consequent cost of EB machines require a relatively large production rate to justify their use. On the other hand, the EB machine, not being a radioactive source, is completely safe when switched off. Overall, since the sixties, sterilization by irradiation has steadily increased. However, most of this is by cobalt-60 gamma irradiation, the EB machines accounting for about a fifth or sixth of the total number of facilities. [Pg.374]

A somewhat related process, the cobalt-mediated synthesis of symmetrical benzo-phenones from aryl iodides and dicobalt octacarbonyl, is shown in Scheme 6.49 [100]. Here, dicobalt octacarbonyl is used as a combined Ar-I bond activator and carbon monoxide source. Employing acetonitrile as solvent, a variety of aryl iodides with different steric and electronic properties underwent the carbonylative coupling in excellent yields. Remarkably, in several cases, microwave irradiation for just 6 s was sufficient to achieve full conversion An inert atmosphere, a base or other additives were all unnecessary. No conversion occurred in the absence of heating, regardless of the reaction time. However, equally high yields could be achieved by heating the reaction mixture in an oil bath for 2 min. [Pg.141]


See other pages where Cobalt irradiation is mentioned: [Pg.183]    [Pg.17]    [Pg.815]    [Pg.183]    [Pg.17]    [Pg.815]    [Pg.192]    [Pg.49]    [Pg.414]    [Pg.587]    [Pg.212]    [Pg.952]    [Pg.267]    [Pg.47]    [Pg.77]    [Pg.244]    [Pg.507]    [Pg.309]    [Pg.253]    [Pg.72]    [Pg.97]    [Pg.385]    [Pg.146]    [Pg.146]    [Pg.187]    [Pg.974]    [Pg.168]   


SEARCH



Cobalt irradiation experiments

Cobalt-60 gamma irradiation

Irradiation, cobalt complexes

Mobile Cobalt-60 Irradiator

© 2024 chempedia.info