Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron membrane-bound

Furin, also known as paired basic amino-acid-cleaving enzyme (PACE), is a membrane bound subtilisin-like serine protease of the irons Golgi compartment. It is ubiquitously expressed and mediates processing of many protein precursors at Arg-X-Lys/Arg-Arg sites. [Pg.512]

Fe-4S] + + clusters are certainly the most ubiquitous iron-sulfur centers in biological systems. They play the role of low potential redox centers in ferredoxins, membrane-bound complexes of the respiratory... [Pg.442]

Despite its weakness, the anisotropy of the g tensor of iron-sulfur centers can be used to determine the orientation of these centers or that of the accommodating polypeptide in relation to a more complex system such as a membrane-bound complex. For this purpose, the EPR study has to be carried out on either partially or fully oriented systems (oriented membranes or monocrystals, respectively). Lastly, the sensitivity of the EPR spectra of iron-sulfur centers to structural changes can be utilized to monitor the conformational changes induced in the protein by different factors, such as the pH and the ionic strength of the solvent or the binding of substrates and inhibitors. We return to the latter point in Section IV. [Pg.450]

The selenate reductase from Enterobacter cloacae SLDla-1 functions only under aerobic conditions, and is not able to serve as an electron acceptor for anaerobic growth, in contrast to the periplasmic enzyme from Thauera selenatis (Schroder et al. 1997). In E. cloacae there are separate nitrate and selenate reductases, both of which are membrane-bound. The selenate reductase is able to reduce chlorate and bromate though not nitrate, contains Mo, heme and nonheme iron, and consists of three subunits in an a3p3y3 configuration. [Pg.165]

A spore-forming strain of Desulfitobacterium chlororespirans was able to couple the dechlorination of 3-chloro-4-hydroxybenzoate to the oxidation of lactate to acetate, pyruvate, or formate (Sanford et al. 1996). Whereas 2,4,6-trichlorophenol and 2,4,6-tribro-mophenol supported growth with the production of 4-chlorophenol and 4-bromophenol, neither 2-bromophenol nor 2-iodophenol was able to do so. The membrane-bound dehalogenase contains cobalamin, iron, and acid-labile sulfur, and is apparently specific for ortho-substituted phenols (Krasotkina et al. 2001). [Pg.488]

Carvediol is a vasodilator with beta-adrenergic antagonist activity. It has cardioprotective activity in animal models. The antioxidant effect of carvediol was compared with five other beta blockers in iron-initiated lipid peroxidation, where it inhibited TBARs formation and protected membrane-bound tocopherol in rat brain homogenate (Yue et al., 1992a). The ortJ <)-substituted phenoxylethyl-amine is responsible for the improved antioxidant activity. [Pg.270]

Pereira MM, Carita JN, Teixeira M. 1999. Membrane-bound electron transfer chain of the ther-mohalophilic bacterium Rhodothermus marinus Characterization of the iron- sulfur centers from the dehydrogenases and investigation of the high-potential iron- sulfur protein function by in vitro reconstitution of the respiratory chain. Biochemistry 38 1276. [Pg.691]

W. Briiggemann, P. R. Moog, H. Nakagawa, P. Janiesch, and P. J. C. Kuiper, Plasma membrane-bound NADH-Fe -EDXA reductase and iron deficiency in tomato. (Lycopcrsicon escidentiim). Is there a turbo reductase Physiol. Plant 79 339 (1991). [Pg.86]

These different systems come into operation under different conditions both environmental and in terms of growth requirements. As we will see later in this chapter, yeasts do not appear to have a mechanism for iron excretion, so that their cellular iron homeostasis, as in E. coli, relies on tight control of uptake and eventually storage. As we will see when we examine these iron uptake systems in detail, most of them require ferrous iron, rather than ferric. This implies that the first step required for iron transport is the reduction of Fe3+ to Fe2+ by membrane-bound reductases. [Pg.134]

Figure 6.16 Top Electron micrographs of iron-overloaded human spleen (a) and of an avian species (Order passeriformes) (b), showing clumps of densely stained material throughout the tissue, haemosiderin. Bottom Electron micrographs of siderosomes from (a) human spleen and (b) an avian species (Order passeriformes). Iron-rich particles can be seen within the membrane-bound structure. Hexagonal arrangements and clusters of unbound ferritin are also seen. Unstained, magnification x 120000. Reprinted from Ward etal., 2000. Copyright (2000), with permission from Elsevier Science. Figure 6.16 Top Electron micrographs of iron-overloaded human spleen (a) and of an avian species (Order passeriformes) (b), showing clumps of densely stained material throughout the tissue, haemosiderin. Bottom Electron micrographs of siderosomes from (a) human spleen and (b) an avian species (Order passeriformes). Iron-rich particles can be seen within the membrane-bound structure. Hexagonal arrangements and clusters of unbound ferritin are also seen. Unstained, magnification x 120000. Reprinted from Ward etal., 2000. Copyright (2000), with permission from Elsevier Science.
Mucosal cells can take up iron from the lumen across their brush border membranes by at least two separate pathways, both of which are thought to be receptor mediated. Non-haem dietary iron seems most likely to be taken across the brush border membrane after reduction by an apical, membrane-bound, ferrireductase and subsequent transport of the Fe2+ by a divalent metal-ion transporter protein, known both as DCT1 and Nramp2. [Pg.234]

Figure 8.3 A model of iron transport across the intestine. Reduction of ferric complexes to the ferrous form is achieved by the action of the brush border ferric reductase. The ferrous form is transported across the brush border membrane by the proton-coupled divalent cation transporter (DCT1) where it enters an unknown compartment in the cytosol. Ferrous iron is then transported across the basolateral membrane by IREG1, where the membrane-bound copper oxidase hephaestin (Hp) promotes release and binding of Fe3+ to circulating apotransferrin. Except for hephaestin the number of transmembrane domains for each protein is not shown in full. Reprinted from McKie et al., 2000. Copyright (2000), with permission from Elsevier Science. Figure 8.3 A model of iron transport across the intestine. Reduction of ferric complexes to the ferrous form is achieved by the action of the brush border ferric reductase. The ferrous form is transported across the brush border membrane by the proton-coupled divalent cation transporter (DCT1) where it enters an unknown compartment in the cytosol. Ferrous iron is then transported across the basolateral membrane by IREG1, where the membrane-bound copper oxidase hephaestin (Hp) promotes release and binding of Fe3+ to circulating apotransferrin. Except for hephaestin the number of transmembrane domains for each protein is not shown in full. Reprinted from McKie et al., 2000. Copyright (2000), with permission from Elsevier Science.
The reaction-center proteins for Photosystems I and II are labeled I and II, respectively. Key Z, the watersplitting enzyme which contains Mn P680 and Qu the primary donor and acceptor species in the reaction-center protein of Photosystem II Qi and Qt, probably plastoquinone molecules PQ, 6-8 plastoquinone molecules that mediate electron and proton transfer across the membrane from outside to inside Fe-S (an iron-sulfur protein), cytochrome f, and PC (plastocyanin), electron carrier proteins between Photosystems II and I P700 and Au the primary donor and acceptor species of the Photosystem I reaction-center protein At, Fe-S a and FeSB, membrane-bound secondary acceptors which are probably Fe-S centers Fd, soluble ferredoxin Fe-S protein and fp, is the flavoprotein that functions as the enzyme that carries out the reduction of NADP+ to NADPH. [Pg.9]

BLM transport systems for ferrioxamine B were also devised based on first coordination shell recognition via ternary complex formation utilizing vacant coordination sites on the Fe(III) center (Fig. 29) (199). The tetra-coordinated substrate complex selectively transported was partially dechelated diaqua-ferrioxamine B and coordinately unsaturated di-hydroxamato iron(III) complexes, which utilized a hydrophobic membrane bound bidentate chelator as a carrier for selective transport. Active transport for these systems was accomplished using a pH gradient (199). [Pg.234]

Despite intense study of the chemical reactivity of the inorganic NO donor SNP with a number of electrophiles and nucleophiles (in particular thiols), the mechanism of NO release from this drug also remains incompletely understood. In biological systems, both enzymatic and non-enzymatic pathways appear to be involved [28]. Nitric oxide release is thought to be preceded by a one-electron reduction step followed by release of cyanide, and an inner-sphere charge transfer reaction between the ni-trosonium ion (NO+) and the ferrous iron (Fe2+). Upon addition of SNP to tissues, formation of iron nitrosyl complexes, which are in equilibrium with S-nitrosothiols, has been observed. A membrane-bound enzyme may be involved in the generation of NO from SNP in vascular tissue [35], but the exact nature of this reducing activity is unknown. [Pg.293]

Giardia intestinalis contains PFOR and has been shown to produce hydrogen (Lloyd et al. 2002) but has not been found to contain hydrogeno-somes. Its iron-sulfur composition appears to be quite distinct from those of the trichomonads. EPR showed both soluble and membrane-bound iron-sulfur proteins of the [4Fe-4S] type (ElUs et al. 1993). [Pg.118]


See other pages where Iron membrane-bound is mentioned: [Pg.1201]    [Pg.11]    [Pg.319]    [Pg.422]    [Pg.472]    [Pg.168]    [Pg.172]    [Pg.488]    [Pg.91]    [Pg.116]    [Pg.64]    [Pg.231]    [Pg.17]    [Pg.56]    [Pg.64]    [Pg.125]    [Pg.126]    [Pg.299]    [Pg.940]    [Pg.372]    [Pg.431]    [Pg.220]    [Pg.228]    [Pg.314]    [Pg.316]    [Pg.253]    [Pg.75]    [Pg.106]    [Pg.108]    [Pg.109]    [Pg.113]    [Pg.117]    [Pg.228]   
See also in sourсe #XX -- [ Pg.116 , Pg.117 ]




SEARCH



Membrane bound

© 2024 chempedia.info