Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron electronic structures

Lee K, Callaway J and Dhar S 1984 Electronic structure of small iron clusters Phys. Rev. B 30 1724... [Pg.2405]

Diels-Alder reactions, 4, 842 flash vapour phase pyrolysis, 4, 846 reactions with 6-dimethylaminofuKenov, 4, 844 reactions with JV,n-diphenylnitrone, 4, 841 reactions with mesitonitrile oxide, 4, 841 structure, 4, 715, 725 synthesis, 4, 725, 767-769, 930 theoretical methods, 4, 3 tricarbonyl iron complexes, 4, 847 dipole moments, 4, 716 n-directing effect, 4, 44 2,5-disubstituted synthesis, 4, 116-117 from l,3-dithiolylium-4-olates, 6, 826 electrocyclization, 4, 748-750 electron bombardment, 4, 739 electronic deformation, 4, 722-723 electronic structure, 4, 715 electrophilic substitution, 4, 43, 44, 717-719, 751 directing effects, 4, 752-753 fluorescence spectra, 4, 735-736 fluorinated derivatives, 4, 679 H NMR, 4, 731 Friedel-Crafts acylation, 4, 777 with fused six-membered heterocyclic rings, 4, 973-1036 fused small rings structure, 4, 720-721 gas phase UV spectrum, 4, 734 H NMR, 4, 7, 728-731, 939 solvent effects, 4, 730 substituent constants, 4, 731 halo... [Pg.894]

Fe(Et2dtc)3]BF4 has the advantage that the product is completely free from by-products and is isolable in yields of 90%. The relationship between Ei,2 values and electronic structures has been described in terms of Ai - T2 crossover equilibrium (273). The rate of e transfer between [Fe(Me2dtc)3] and [Fe(Me2dtc>3]BF4 has been measured by H-NMR, line-broadening experiments (275). Mossbauer-spectral data have been published (276) for a series of (R2dtc) complexes of iron(IV). [Pg.245]

Attempts to elucidate the bonding have concentrated mainly on graphite-FeCla- This intercalate is especially suitable as a model compound, because the magnetic and Mossbauer properties of the iron nucleus constitute excellent probes for electronic structure and environment of the latter. [Pg.307]

With these assignments at hand the analysis of the hyperfine shifts became possible. An Fe(III) in tetrahedral structures of iron-sulfur proteins has a high-spin electronic structure, with negligible magnetic anisotropy. The hyperfine shifts of the protons influenced by the Fe(III) are essentially Fermi contact in origin 21, 22). An Fe(II), on the other hand, has four unpaired electrons and there may be some magnetic anisotropy, giving rise to pseudo-contact shifts. In addition, there is a quintet state at a few hundred cm which may complicate the analysis of hyperfine shifts, but the main contribution to hyperfine shifts is still from the contact shifts 21, 22). [Pg.252]

Contact shifts give information on the electronic structure of the iron atoms, particularly on the valence distribution and on the magnetic coupling within polymetallic systems. The magnetic coupling scheme, which is considered later, fully accounts for the variety of observed hyperfine shifts and the temperature dependence. Thus, through the analysis of the hyperfine shifts, NMR provides detailed information on the metal site(s) of iron-sulfur proteins, and, thanks to the progress in NMR spectroscopy, also the solution structure 23, 24 ). [Pg.252]

In this section, the characteristics of the spectra displayed by the different types of iron—sulfur centers are presented, with special emphasis on how they depend on the geometrical and electronic structure of the centers. The electronic structure is only briefly recalled here, however, and interested readers are referred to the excellent standard texts published on this topic (3, 4). Likewise, the relaxation properties of the centers are described, but the nature of the underlying spin-lattice relaxation processes is not analyzed in detail. However, a short outline of these processes is given in the Appendix. The aim of this introductory section is therefore mainly to describe the tools used in the practical applications presented in Sections III and IV. It ends in a discussion about some of the issues that may arise when EPR spectroscopy is used to identify iron-sulfur centers. [Pg.423]

With trinuclear clusters, we are now dealing with systems whose electronic structure depends on multiple intersite interactions that may differ from one iron pair to another. As a result, the separation between adjacent energy levels depends, not on the magnitude of these interactions, but on their difference. This may give rise to low-lying excited levels, which may have far-reaching effects on both the EPR spectrum and the relaxation properties. [Pg.436]

EPR studies on electron transfer systems where neighboring centers are coupled by spin-spin interactions can yield useful data for analyzing the electron transfer kinetics. In the framework of the Condon approximation, the electron transfer rate constant predicted by electron transfer theories can be expressed as the product of an electronic factor Tab by a nuclear factor that depends explicitly on temperature (258). On the one hand, since iron-sulfur clusters are spatially extended redox centers, the electronic factor strongly depends on how the various sites of the cluster are affected by the variation in the electronic structure between the oxidized and reduced forms. Theoret-... [Pg.478]

The electronic absorption spectra of the products of one-electron electrochemical reduction of the iron(III) phenyl porphyrin complexes have characteristics of both iron(II) porphyrin and iron(III) porphyrin radical anion species, and an electronic structure involving both re.sonance forms Fe"(Por)Ph] and tFe "(Por—)Ph has been propo.sed. Chemical reduction of Fe(TPP)R to the iron(II) anion Fe(TPP)R) (R = Et or /7-Pr) was achieved using Li BHEt3 or K(BH(i-Bu)3 as the reductant in benzene/THF solution at room temperature in the dark. The resonances of the -propyl group in the F NMR spectrum of Fe(TPP)(rt-Pr) appear in the upfield positions (—0.5 to —6.0 ppm) expected for a diamagnetic porphyrin complex. This contrasts with the paramagnetic, 5 = 2 spin state observed... [Pg.248]

Bis(imino)pyridine iron complex 5 as a highly efficient catalyst for a hydrogenation reaction was synthesized by Chirik and coworkers in 2004 [27]. Complex 5 looks like a Fe(0) complex, but detailed investigations into the electronic structure of 5 by metrical data, Mossbauer parameters, infrared and NMR spectroscopy, and DFT calculations established the Fe(ll) complex described as 5 in Fig. 2 to be the higher populated species [28]. [Pg.31]

Copper, iron, and aluminum are three common metals in modem society. Copper wires carry the electricity that powers most appliances, including the lamp by which you may be reading. The chair in which you are sitting may have an iron frame, and you may be sipping a soft drink from an aluminum can. The properties that allow metals to be used for such a wide range of products can be traced to the principles of bonding and electronic structure. [Pg.723]

Porphyrin is a multi-detectable molecule, that is, a number of its properties are detectable by many physical methods. Not only the most popular nuclear magnetic resonance and light absorption and emission spectroscopic methods, but also the electron spin resonance method for paramagnetic metallopor-phyrins and Mossbauer spectroscopy for iron and tin porphyrins are frequently used to estimate the electronic structure of porphyrins. By using these multi-detectable properties of the porphyrins of CPOs, a novel physical phenomenon is expected to be found. In particular, the topology of the cyclic shape is an ideal one-dimensional state of the materials used in quantum physics [ 16]. The concept of aromaticity found in fuUerenes, spherical aromaticity, will be revised using TT-conjugated CPOs [17]. [Pg.70]

Most complexes showing spin-state transitions are in fact of low symmetry. In order to describe their electronic structure it is convenient to employ term symbols appropriate to cubic symmetry and this practice will be followed below. The most common transition-metal ions for which spin-state transitions have been observed are Fe " (3d ), Fe " (3d ) and Co (3d ), a minor role being played by Co " (3d ), Mn " (3d ), as well as Cr " and Mn " (3d ). The relevant ground states for an octahedral disposition of the ligands are LS Ui,(t ,) and HS r2,(t ,e ) for iron(II), LS and HS Ai,(t, e ) for... [Pg.53]

In tier (1) of the diagram (for the electronic structure of iron(III)), only the total energy of the five metal valence electrons in the potential of the nucleus is considered. Electron-electron repulsion in tier (2) yields the free-ion terms (Russel-Saunders terms) that are usually labeled by term ° symbols (The numbers given in brackets at the energy states indicate the spin- and orbital-multiplicities of these states.)... [Pg.122]

The first-principles calculation of NIS spectra has several important aspects. First of all, they greatly assist the assignment of NIS spectra. Secondly, the elucidation of the vibrational frequencies and normal mode compositions by means of quantum chemical calculations allows for the interpretation of the observed NIS patterns in terms of geometric and electronic structure and consequently provide a means of critically testing proposals for species of unknown structure. The first-principles calculation also provides an unambiguous way to perform consistent quantitative parameterization of experimental NIS data. Finally, there is another methodological aspect concerning the accuracy of the quantum chemically calculated force fields. Such calculations typically use only the experimental frequencies as reference values. However, apart from the frequencies, NIS probes the shapes of the normal modes for which the iron composition factors are a direct quantitative measure. Thus, by comparison with experimental data, one can assess the quality of the calculated normal mode compositions. [Pg.187]

In a crystal-field picture, the electronic structure of iron in the five-coordinate compounds is usually best represented by a (d yf idyz, 4cz) ( zO configuration [66, 70], as convincingly borne out by spin-unrestricted DFT calculations on the Jager compound 20 [68]. The intermediate spin configuration with an empty d 2 yi orbital in the CF model, however, has a vanishing valence contribution to the... [Pg.423]


See other pages where Iron electronic structures is mentioned: [Pg.395]    [Pg.281]    [Pg.284]    [Pg.144]    [Pg.145]    [Pg.395]    [Pg.281]    [Pg.284]    [Pg.144]    [Pg.145]    [Pg.266]    [Pg.266]    [Pg.619]    [Pg.99]    [Pg.807]    [Pg.182]    [Pg.229]    [Pg.232]    [Pg.232]    [Pg.374]    [Pg.368]    [Pg.265]    [Pg.422]    [Pg.443]    [Pg.450]    [Pg.485]    [Pg.248]    [Pg.121]    [Pg.248]    [Pg.249]    [Pg.116]    [Pg.116]    [Pg.525]    [Pg.44]    [Pg.120]    [Pg.393]    [Pg.421]    [Pg.427]   
See also in sourсe #XX -- [ Pg.790 ]




SEARCH



Iron structure

Iron-57, electronic

© 2024 chempedia.info