Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium Catalyst Reaction

This reaction is rapidly replacing the former ethylene-based acetaldehyde oxidation route to acetic acid. The Monsanto process employs rhodium and methyl iodide, but soluble cobalt and iridium catalysts also have been found to be effective in the presence of iodide promoters. [Pg.166]

Cyanuric acid can also be prepared from HNCO (100). Isocyanic acid [75-13-8] can be synthesized directiy by oxidation of HCN over a silver catalyst (101) or by reaction of H2, CO, and NO (60—75% yield) over palladium or iridium catalysts at 280—450°C (102). Ammonium cyanate and urea are by-products of the latter reaction. [Pg.420]

Disiloxane, tetramesityl-, 3,206 Disproportionation iridium catalysts, 4,1159 Dissolution nuclear fuels, 6, 927 Distannene, 3,217 Distannoxane, 1,3-dichloro-, 3,207 Distibine, tetraphenyl-, 2,1008 Distibines, 2,1008 Disulfido ligands metal complexes, 2,531-540, 553 bonding, 2, 539 electron transfer, 2, 537 intramolecular redox reactions, 2,537 reactions, 2, 537... [Pg.123]

Hydrogenation of substrates having a polar multiple C-heteroatom bond such as ketones or aldehydes has attracted significant attention because the alcohols obtained by this hydrogenation are important building blocks. Usually ruthenium, rhodium, and iridium catalysts are used in these reactions [32-36]. Nowadays, it is expected that an iron catalyst is becoming an alternative material to these precious-metal catalysts. [Pg.35]

The addition of terminal acetylenes to imines is an important reaction because of the importance of these products as building blocks. Conventionally, the addition reaction shown in Scheme 5.2 is performed with stoichiometric amounts of butyllithium in a step that is, separate from the subsequent nucleophilic addition reaction (see (b)). Carreira has recently developed a procedure that utilizes an iridium catalyst to effect the addition reaction to a wide range of aldimines and ketimines (see (a)). ... [Pg.206]

The iridium catalyst is very expensive (98.1 Euro for 0.25 g), therefore, the overall price of synthesis by means of the iridium catalyst (Figure 5.5a) is much higher than for the classical reaction (Figure 5.5b). [Pg.207]

Presumably, the stereoselectivity in these cases is the result of coordination of iridium by the functional group. The crucial property required for a catalyst to be stereodirective is that it be able to coordinate with both the directive group and the double bond and still accommodate the metal hydride bonds necessary for hydrogenation. In the iridium catalyst illustrated above, the cyclooctadiene ligand (COD) in the catalysts is released by hydrogenation, permitting coordination of the reactant and reaction with hydrogen. [Pg.376]

C. Reaction of Benzene with Deuterium on Iridium Catalysts. 107... [Pg.75]

However, it will at any rate be clear now that the palladium, nickel, and iridium catalysts used in our experiments differ widely in surface characteristics, as is evident from the variations in chemisorptive behavior. An obvious question that may be asked now is whether the catalysts differ also in catalytic behavior. This induced us to study the reaction of benzene with deuterium on the nickel and iridium catalysts. [Pg.100]

The results obtained with nickel raised the question whether the relation found between rate of exchange and particle size holds also for other metals of group VIII. We therefore carried out the benzene-D2 reaction on some iridium catalysts widely differing in particle size. We chose iridium because we knew from earlier experiments that iridium black gives a very characteristic cyclohexane isotopic distribution pattern with a maximum for C6H4Ds, whereas the patterns of Ni, Ru, Pd, and Pt show a maximum for the d6 compound. [Pg.107]

The rate of the methanol carbonylation reaction in the presence of iridium catalysts is very similar to that observed in the presence of rhodium catalysts under comparable conditions (29). This is perhaps initially surprising in view of the well-recognized greater nucleophilicity of iridium(I) complexes as compared to their rhodium(I) analogues. It can be seen from the above studies that the difference in the chemistry of the metals at the trivalent stage of the catalytic cycle serves to produce faster rates of alkyl migration with the rhodium system thus, overall the two metal catalysts give comparable rates. [Pg.266]

The most fundamental reaction is the alkylation of benzene with ethene.38,38a-38c Arylation of inactivated alkenes with inactivated arenes proceeds with the aid of a binuclear Ir(m) catalyst, [Ir(/x-acac-0,0,C3)(acac-0,0)(acac-C3)]2, to afford anti-Markovnikov hydroarylation products (Equation (33)). The iridium-catalyzed reaction of benzene with ethene at 180 °G for 3 h gives ethylbenzene (TN = 455, TOF = 0.0421 s 1). The reaction of benzene with propene leads to the formation of /z-propylbenzene and isopropylbenzene in 61% and 39% selectivities (TN = 13, TOF = 0.0110s-1). The catalytic reaction of the dinuclear Ir complex is shown to proceed via the formation of a mononuclear bis-acac-0,0 phenyl-Ir(m) species.388 The interesting aspect is the lack of /3-hydride elimination from the aryliridium intermediates giving the olefinic products. The reaction of substituted arenes with olefins provides a mixture of regioisomers. For example, the reaction of toluene with ethene affords m- and />-isomers in 63% and 37% selectivity, respectively. [Pg.220]

Allenes, while arguably underused in synthesis as a whole, have become popular functionalities in cycloisomerization chemistry and provide access to a wide variety of products. Ruthenium, cobalt, platinum, palladium, rhodium, and iridium catalysts are efficient in the transition metal-catalyzed Alder-ene reactions of allenes. [Pg.584]

Transition metals can display selectivities for either carbonyls or olefins (Table 20.3). RuCl2(PPh3)3 (24) catalyzes reduction of the C-C double bond function in the presence of a ketone function (Table 20.3, entries 1-3). With this catalyst, reaction rates of the reduction of alkenes are usually higher than for ketones. This is also the case with various iridium catalysts (entries 6-14) and a ruthenium catalyst (entry 15). One of the few transition-metal catalysts that shows good selectivity towards the ketone or aldehyde function is the nickel catalyst (entries 4 and 5). Many other catalysts have never been tested for their selectivity for one particular functional group. [Pg.603]

In these reactions, the major diastereomer is formed by the addition of hydrogen syn to the hydroxyl group in the substrate. The cationic iridium catalyst [Ir(PCy3)(py)(nbd)]+ is very effective in hydroxy-directive hydrogenation of cyclic alcohols to afford high diastereoselectivity, even in the case of bishomoallyl alcohols (Table 21.4, entries 10-13) [5, 34, 35]. An intermediary dihydride species is not observed in the case of rhodium complexes, but iridium dihydride species are observed and the interaction of the hydroxyl unit of an unsaturated alcohol with iridium is detected spectrometrically through the presence of diastereotopic hydrides using NMR spectroscopy [21]. [Pg.639]

Extensive investigations in our laboratories on the deactivation of rhodium and iridium catalysts has shown there to be a number of different mechanisms involved. Both, rhodium and iridium catalysts are generally less stable at higher temperatures, and have more labile ligands than their ruthenium counterparts. All of the catalysts are affected by pH, but the ruthenium catalysts seem to be more readily deactivated by acid. Indeed, these reactions are often quenched with acetic acid, whilst stronger acids are used to quench the rhodium reactions. Each of the catalysts can be deactivated by product inhibition, the ruthenium catalyst with aromatic substrates such as phenylethanol, and the rhodium and iridium ones by bidentate chelating products. [Pg.1238]

A key feature of the mechanism of Wilkinson s catalyst is that catalysis begins with reaction of the solvated catalyst, RhCl(PPh3)2S (S=solvent), and H2 to form a solvated dihydride Rh(H)2Cl(PPh3)2S [1], In a subsequent step the alkene binds to the catalyst and then is transformed into product via migratory insertion and reductive elimination steps. Schrock and Osborn investigated solvated cationic complexes [M(PR3)2S2]+ (M=Rh, Ir and S= solvent) that are closely related to Wilkinson s catalyst. Similarly to Wilkinson s catalyst, the mechanistic sequence proposed by Schrock and Osborn features initial reaction of the catalyst with H2 followed by reaction of the dihydride with alkene for the case of monophosphine-ligated rhodium and iridium catalysts [12-17]. Such mechanisms commonly are characterized... [Pg.109]

Other methods for the preparation of acetic acid are partial oxidation of butane, oxidation of ethanal -obtained from Wacker oxidation of ethene-, biooxidation of ethanol for food applications, and we may add the same carbonylation reaction carried out with a cobalt catalyst or an iridium catalyst. The rhodium and iridium catalysts have several distinct advantages over the cobalt catalyst they are much fester and fer more selective. In process terms the higher rate is translated into much lower pressures (the cobalt catalyst is operated by BASF at pressures of 700 bar). For years now the Monsanto process (now owned by BP) has been the most attractive route for the preparation of acetic acid, but in recent years the iridium-based CATTVA process, developed by BP, has come on stream. [Pg.109]

Bis-allylic oxidation of 23 and related cyclohexa-1,4-dienes provides a convenient and general preparation of cyclohexa-2,5-dien-l-ones (Scheme 7). These cross-conjugated die-nones are substrates for a variety of photochemical rearrangement and intramolecular cycloaddition reactions. Amide-directed hydrogenations of dienones 24a and 24b with the homogeneous iridium catalyst afford cyclohexanones 25a and 25b, containing three stereogenic centers on the six-... [Pg.3]

In all the applications described above, the iridium catalyst showed special properties not so far obtainable with any other metal. We now move on to reactions in which iridium is active but where other metals have also been shown to be suitable. [Pg.7]


See other pages where Iridium Catalyst Reaction is mentioned: [Pg.311]    [Pg.92]    [Pg.69]    [Pg.206]    [Pg.151]    [Pg.659]    [Pg.68]    [Pg.229]    [Pg.261]    [Pg.208]    [Pg.122]    [Pg.83]    [Pg.147]    [Pg.109]    [Pg.242]    [Pg.40]    [Pg.46]    [Pg.638]    [Pg.653]    [Pg.1056]    [Pg.46]    [Pg.54]    [Pg.237]    [Pg.89]    [Pg.113]    [Pg.6]    [Pg.7]    [Pg.13]   


SEARCH



Iridium catalysts

© 2024 chempedia.info