Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium applications

Gammagraphic weld inspection in the lower range of steel thicknesses has been done with Iridium and Ytterbium isotope sources throughout the past. The large majority of applications has been using Iridium due to the unfavourable economical parameters of Ytterbium, obviously with non-optimal results at thin wall inspections. [Pg.423]

Practical applications [2] of a GammaMat M model using the new Selenium crawler camera loaded with approx. 1 TBq (30Ci) on a pipeline of diameter 12 and wall thickness of 0.25 showed 6-7 m axial distance to the exposed source as limit of the radiation controlled area (40pSv/h) and 22m perpendicular to the pipeline. Other authors [3] have reported about a comparison for Ir-192 and Selenium source on a 4.5 diameter pipe and 0,125 steel thickness they have found for 0.7 Tbq (18Ci) Selenium a value of 1 Om behind the film (in the unshielded beam) comparing under same conditions to approx. 40m for Iridium. [Pg.428]

In 1996, consumption in the western world was 14.2 tonnes of rhodium and 3.8 tonnes of iridium. Unquestionably the main uses of rhodium (over 90%) are now catalytic, e.g. for the control of exhaust emissions in the car (automobile) industry and, in the form of phosphine complexes, in hydrogenation and hydroformylation reactions where it is frequently more efficient than the more commonly used cobalt catalysts. Iridium is used in the coating of anodes in chloralkali plant and as a catalyst in the production of acetic acid. It also finds small-scale applications in specialist hard alloys. [Pg.1115]

The excellent resistance of platinum, rhodium and iridium to oxidation at high temperatures finds numerous applications in technology, in particular in the form of platinum-based alloys. Osmium and ruthenium form volatile oxides which may be isolated (OSO4 and RujOj), and they are not widely used. [Pg.933]

Platinum and rhodium-platinum and iridium-platinum alloys are frequently employed to line and sheath autoclaves, reactor vessels and tubes, and a wide range of equipment. Linings are generally 0-13 mm to 0- 38 mm thick, and for certain applications co-extruded platinum-lined Inconel or other metal reactor or cooling tubes are fabricated. In such cases the platinum is bonded to the base metal, but in all other instances platinum linings are of the loose type. [Pg.935]

The most widely used methods for the application of coatings of gold, silver and the platinum group metals (platinum, palladium, rhodium, iridium, ruthenium, osmium) to base metals are mechanical cladding and electroplating. [Pg.557]

Ruthenium, iridium and osmium The use of a fused cyanide electrolyte is the most effective means for the production of sound relatively thick coatings of ruthenium and iridium, but this type of process is unattractive and inconvenient for general purposes and does not therefore appear to have developed yet to a significant extent for industrial application. This is unfortunate, since these metals are the most refractory of the platinum group and in principle their properties might best be utilised in the form of coatings. However, several interesting improvements have been made in the development of aqueous electrolytes. [Pg.563]

The introduction of the sample into the adsorbent layer is a critical process in HPTLC. For most quantitative work a platinum-iridium capillary of fixed volume (100 or 200 nL), sealed into a glass support capillary of larger bore, provides a convenient spotting device. The capillary tip is polished to provide a smooth, planar surface of small area (ca 0.05 mm2), which when used with a mechanical applicator minimises damage to the surface of the plate spotting by manual procedures invariably damages the surface. [Pg.232]

The main use of rhodium is with platinum in catalysts for oxidation of automobile exhaust emissions. In the chemical industry, it is used in catalysts for the manufacture of ethanoic acid, in hydroformylation of alkenes and the synthesis of nitric acid from ammonia. Many applications of iridium rely on... [Pg.78]

In the same study, these authors have prepared another series of amino-sulf(ox)ide ligands based on the (Nor)ephedrine and 2-aminodiphenylethanol skeletons, bearing two chiral centres in the carbon backbone.Their application to the iridium-catalysed hydrogen-transfer reduction of acetophenone generally gave better yields, but the enantioselectivity never exceeded 65% ee (Scheme 9.4). [Pg.271]

It is a matter of historical interest that Mossbauer spectroscopy has its deepest root in the 129.4 keV transition line of lr, for which R.L. Mossbauer established recoilless nuclear resonance absorption for the first time while he was working on his thesis under Prof. Maier-Leibnitz at Heidelberg [267]. But this nuclear transition is, by far, not the easiest one among the four iridium Mossbauer transitions to use for solid-state applications the 129 keV excited state is rather short-lived (fi/2 = 90 ps) and consequently the line width is very broad. The 73 keV transition line of lr with the lowest transition energy and the narrowest natural line width (0.60 mm s ) fulfills best the practical requirements and therefore is, of all four iridium transitions, most often (in about 90% of all reports published on Ir Mossbauer spectroscopy) used in studying electronic stractures, bond properties, and magnetism. [Pg.320]

Information on the chemical state of iridium on going from the molecular precursors, and its adsorption on the surface of the support can be obtained by Ir Mossbauer spectroscopy. It allows to estimate the composition of the Ir-containing alloys that are possibly formed during the activation treatment of supported bimetallic systems. The main results obtained in the application of Ir Mossbauer spectroscopy to characterize two Ir-containing bimetallic supported nanoparticles, i.e., Pt-Ir on amorphous silica and Fe-Ir on magnesia are presented and discussed... [Pg.335]

Iridium as an electrode material has received considerable attention in the last decade not only because of its excellent catalytic properties but also in relation to the electrochromic effect observed for anodic iridium oxide films (AIROF). Electrochromism of iridium was thought to be of technical relevance for display applications and triggered several studies of the electrochemical and optical properties of AlROFs [67, 85-88],... [Pg.109]

It is noteworthy that ZnEt2 has been used as a base in enantioselective allylic substitutions. A remarkable increase in ee was observed when ZnEt2 was used instead of KH, NaH, LiH, LDA, or BuLi in the Pd-catalyzed alkylations of allylic acetates by enolates of malonic esters and related compounds.403 In contrast, application of ZnEt2 was not as very effective as in similar iridium-catalyzed allylic alkylations.404... [Pg.405]

Simultaneous and continuous measurements of extracellular pH, potassium K+, and lactate in an ischemic heart were carried out to study lactic acid production, intracellular acidification, and cellular K+ loss and their quantitative relationships [6, 7], The pH sensor was fabricated on a flexible kapton substrate and the pH sensitive iridium oxide layer was electrodeposited on a planar platinum electrode. Antimony-based pH electrodes have also been used for the measurement of myocardial pH in addition to their application in esophageal acid reflux detection. [Pg.314]

Micouin investigated rhodium-catalyzed hydroboration as a means of desymmetrizing meso hydrazines 59 in an important new application.36 Enantiomeric excess of up to 84% was obtained after screening diphosphines such as DIOP and BDPP (Scheme 9). Interestingly, they noted an unprecedented reversal of enantioselectivity by changing from rhodium to iridium. [Pg.851]

Today, iridium compounds find so many varied applications in contemporary homogeneous catalysis it is difficult to recall that, until the late 1970s, rhodium was one of only two metals considered likely to serve as useful catalysts, at that time typically for hydrogenation or hydroformylation. Indeed, catalyst/solvent combinations such as [IrCl(PPh3)3]/MeOH, which were modeled directly on what was previously successful for rhodium, failed for iridium. Although iridium was still considered potentially to be useful, this was only for the demonstration of stoichiometric reactions related to proposed catalytic cycles. Iridium tends to form stronger metal-ligand bonds (e.g., Cp(CO)Rh-CO, 46 kcal mol-1 Cp(CO)Ir-CO, 57 kcal mol ), and consequently compounds which act as reactive intermediates for rhodium can sometimes be isolated in the case of iridium. [Pg.35]

Another interesting application of high-pressure tubes is the in-situ investigation of reactions in supercritical solvents such as carbon dioxide. For example, the iridium-catalyzed enantioselective hydrogenation of imines was investigated in a sapphire tube at 313 K [32]. [Pg.308]


See other pages where Iridium applications is mentioned: [Pg.118]    [Pg.91]    [Pg.12]    [Pg.878]    [Pg.557]    [Pg.563]    [Pg.564]    [Pg.360]    [Pg.388]    [Pg.191]    [Pg.321]    [Pg.261]    [Pg.252]    [Pg.293]    [Pg.303]    [Pg.322]    [Pg.211]    [Pg.179]    [Pg.105]    [Pg.1122]    [Pg.146]    [Pg.119]    [Pg.305]    [Pg.451]    [Pg.1]    [Pg.325]    [Pg.343]    [Pg.46]    [Pg.227]    [Pg.359]    [Pg.631]    [Pg.1014]   
See also in sourсe #XX -- [ Pg.306 ]




SEARCH



Iridium N-Heterocyclic Carbene Complexes and Their Application as Homogeneous Catalysts

Iridium complexes applications

Iridium luminescent, applications

© 2024 chempedia.info