Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition iridium

Although trialkyl- and triarylbismuthines are much weaker donors than the corresponding phosphoms, arsenic, and antimony compounds, they have nevertheless been employed to a considerable extent as ligands in transition metal complexes. The metals coordinated to the bismuth in these complexes include chromium (72—77), cobalt (78,79), iridium (80), iron (77,81,82), manganese (83,84), molybdenum (72,75—77,85—89), nickel (75,79,90,91), niobium (92), rhodium (93,94), silver (95—97), tungsten (72,75—77,87,89), uranium (98), and vanadium (99). The coordination compounds formed from tertiary bismuthines are less stable than those formed from tertiary phosphines, arsines, or stibines. [Pg.131]

Low Pressure Syntheses. The majority of metal carbonyls are synthesized under high pressures of CO. Early preparations of carbonyls were made under superpressures of 1 GPa (ca 10,000 atm). Numerous reports have appeared in the Hterature concerning low pressure syntheses of metal carbonyls, but the reactions have been restricted primarily to the carbonyls of the transition metals of Groups 8—10 (VIII). A procedure for preparing Mn2(CO)2Q, however, from commercially available methylcyclopentadienyknanganese tricarbonyl [12108-13-3] and atmospheric pressures of CO has been reported (117). The carbonyls of mthenium (118,119), rhodium (120,121), and iridium (122,123) have been synthesized in good yields employing low pressure techniques. In all three cases, very low or even atmospheric pressures of CO effect carbonylation. Examples of successful low pressure syntheses are... [Pg.68]

Two classes of metals have been examined for potential use as catalytic materials for automobile exhaust control. These consist of some of the transitional base metal series, for instance, cobalt, copper, chromium, nickel, manganese, and vanadium and the precious metal series consisting of platinum [7440-06-4], Pt palladium [7440-05-3], Pd rhodium [7440-16-6], Rh iridium, [7439-88-5], Ir and mthenium [7440-18-8], Ru. Specific catalyst activities are shown in Table 3. [Pg.487]

Pyridazines form complexes with iodine, iodine monochloride, bromine, nickel(II) ethyl xanthate, iron carbonyls, iron carbonyl and triphenylphosphine, boron trihalides, silver salts, mercury(I) salts, iridium and ruthenium salts, chromium carbonyl and transition metals, and pentammine complexes of osmium(II) and osmium(III) (79ACS(A)125). Pyridazine N- oxide and its methyl and phenyl substituted derivatives form copper complexes (78TL1979). [Pg.37]

The metals are lustrous and silvery with, in the case of cobalt, a bluish tinge. Rhodium and iridium are both hard, cobalt less so but still appreciably harder than iron. Rhodium and Ir have fee structures, the first elements in the transition series to do so this is in keeping... [Pg.1115]

The effect of the CFSE is expected to be even more marked in the case of the heavier elements because for them the crystal field splittings are much greater. As a result the +3 state is the most important one for both Rh and Ir and [M(H20)6] are the only simple aquo ions formed by these elements. With rr-acceptor ligands the +1 oxidation state is also well known for Rh and Ir. It is noticeable, however, that the similarity of these two heavier elements is less than is the case earlier in the transition series and, although rhodium resembles iridium more than cobalt, nevertheless there are significant differences. One example is provided by the +4 oxidation state which occurs to an appreciable extent in iridium but not in rhodium. (The ease with which Ir, Ir sometimes occurs... [Pg.1116]

The transition-metal catalyzed decomposition of thiirene dioxides has been also investigated primarily via kinetic studies103. Zerovalent platinum and palladium complexes and monovalent iridium and rhodium complexes were found to affect this process, whereas divalent platinum and palladium had no effect. The kinetic data suggested the mechanism in equation 7. [Pg.400]

The platinum-group metals comprise ruthenium (Ru), rhodium (Rh) and palladium (Pd) from the second transition series and osmium (Os), iridium(Ir), and platinum (Pt) from thethird transition series. Little or no C VD investigation of palladium and osmium have been reported and these metalsarenotincludedhere. The properties of the other platinum-group metals are summarized in Table 6.9. [Pg.162]

As already mentioned, complexes of chromium(iii), cobalt(iii), rhodium(iii) and iridium(iii) are particularly inert, with substitution reactions often taking many hours or days under relatively forcing conditions. The majority of kinetic studies on the reactions of transition-metal complexes have been performed on complexes of these metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to those in organic chemistry, and the techniques which have been developed for the investigation of such reactions are readily available and appropriate. The time scales of minutes to days are compatible with relatively slow spectroscopic techniques. The second reason is associated with the kinetic inertness of the products. If the products are non-labile, valuable stereochemical information about the course of the substitution reaction may be obtained. Much is known about the stereochemistry of ligand substitution reactions of cobalt(iii) complexes, from which certain inferences about the nature of the intermediates or transition states involved may be drawn. This is also the case for substitution reactions of square-planar complexes of platinum(ii), where study has led to the development of rules to predict the stereochemical course of reactions at this centre. [Pg.187]

It will not have escaped the reader s attention that the kinetically inert complexes are those of (chromium(iii)) or low-spin d (cobalt(iii), rhodium(iii) or iridium(iii)). Attempts to rationalize this have been made in terms of ligand-field effects, as we now discuss. Note, however, that remarkably little is known about the nature of the transition state for most substitution reactions. Fortunately, the outcome of the approach we summarize is unchanged whether the mechanism is associative or dissociative. [Pg.187]

Non-ionic thiourea derivatives have been used as ligands for metal complexes [63,64] as well as anionic thioureas and, in both cases, coordination in metal clusters has also been described [65,66]. Examples of mononuclear complexes of simple alkyl- or aryl-substituted thiourea monoanions, containing N,S-chelating ligands (Scheme 11), have been reported for rhodium(III) [67,68], iridium and many other transition metals, such as chromium(III), technetium(III), rhenium(V), aluminium, ruthenium, osmium, platinum [69] and palladium [70]. Many complexes with N,S-chelating monothioureas were prepared with two triphenylphosphines as substituents. [Pg.240]

A few of the transition metals, including gold, platinum, and iridium, are found in nature as pure elements, but most of the others are found associated with either sulfur or oxygen. Iron, manganese, and the metals of Groups 3 to 6 (except for Mo) are most often found as oxides less often, they occur as sulfates or carbonates. Molybdenum and the metals of Groups 7 to 12 (e.xcept forMn and Fe) are most often found as sulfides. [Pg.1433]

The most common isomerisation reactions catalysed by transition metals are those involving the isomerisation of alkenes. Taller, Crabtree and co-workers have reported that the iridium bfy-NHC complex 55 is effective for the isomerisation of... [Pg.259]

In the early work on the thermolysis of metal complexes for the synthesis of metal nanoparticles, the precursor carbonyl complex of transition metals, e.g., Co2(CO)8, in organic solvent functions as a metal source of nanoparticles and thermally decomposes in the presence of various polymers to afford polymer-protected metal nanoparticles under relatively mild conditions [1-3]. Particle sizes depend on the kind of polymers, ranging from 5 to >100 nm. The particle size distribution sometimes became wide. Other cobalt, iron [4], nickel [5], rhodium, iridium, rutheniuim, osmium, palladium, and platinum nanoparticles stabilized by polymers have been prepared by similar thermolysis procedures. Besides carbonyl complexes, palladium acetate, palladium acetylacetonate, and platinum acetylac-etonate were also used as a precursor complex in organic solvents like methyl-wo-butylketone [6-9]. These results proposed facile preparative method of metal nanoparticles. However, it may be considered that the size-regulated preparation of metal nanoparticles by thermolysis procedure should be conducted under the limited condition. [Pg.367]

The first transition metal-catalyzed hydroamination of an olefin was reported in 1971 by Coulson who used rhodium(I), rhodium(III) or iridium(III) catalysts (Eq. 4.8) [105,106]. [Pg.97]

The fourth chapter gives a comprehensive review about catalyzed hydroamina-tions of carbon carbon multiple bond systems from the beginning of this century to the state-of-the-art today. As was mentioned above, the direct - and whenever possible stereoselective - addition of amines to unsaturated hydrocarbons is one of the shortest routes to produce (chiral) amines. Provided that a catalyst of sufficient activity and stabihty can be found, this heterofunctionalization reaction could compete with classical substitution chemistry and is of high industrial interest. As the authors J. J. Bmnet and D. Neibecker show in their contribution, almost any transition metal salt has been subjected to this reaction and numerous reaction conditions were tested. However, although considerable progress has been made and enantios-electivites of 95% could be reached, all catalytic systems known to date suffer from low activity (TOP < 500 h ) or/and low stability. The most effective systems are represented by some iridium phosphine or cyclopentadienyl samarium complexes. [Pg.289]

Fig. 7.54 Mosshauer spectra of osmium compounds obtained at 4.2 K with 69.6 keV (a) and 36.2 keV (b) transitions of Os with a source of Ir in iridium metal (from [258])... Fig. 7.54 Mosshauer spectra of osmium compounds obtained at 4.2 K with 69.6 keV (a) and 36.2 keV (b) transitions of Os with a source of Ir in iridium metal (from [258])...

See other pages where Transition iridium is mentioned: [Pg.19]    [Pg.19]    [Pg.167]    [Pg.221]    [Pg.176]    [Pg.182]    [Pg.534]    [Pg.452]    [Pg.662]    [Pg.1121]    [Pg.190]    [Pg.121]    [Pg.141]    [Pg.151]    [Pg.412]    [Pg.244]    [Pg.360]    [Pg.79]    [Pg.113]    [Pg.53]    [Pg.67]    [Pg.155]    [Pg.191]    [Pg.1457]    [Pg.357]    [Pg.267]    [Pg.412]    [Pg.183]    [Pg.259]    [Pg.270]    [Pg.33]    [Pg.14]    [Pg.282]    [Pg.303]   
See also in sourсe #XX -- [ Pg.232 , Pg.236 , Pg.241 , Pg.247 , Pg.255 ]




SEARCH



© 2024 chempedia.info