Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

IR spectroscopy, comparison

Comparison and identification, usually by means of thin layer chromatography and/or IR spectroscopy. Comparison is made with the blank sample (extract from unstained areas) and with authentic substances which could have caused the stain. If the stain cannot be extracted, IR spectra from stained and unstained areas can be compared and the spectra subtracted in order to identify the stain substance. The limits of detection of typical stain substances in IR spectra and a comparison of IR methods have been given in the literature ... [Pg.149]

Identified by Viani et al. (1965), the structure was confirmed by IR-spectroscopy comparison with a commercially available sample found also by Gianturco et al. (1966), Stoffelsma et al. (1968) and by Silwar et al. (1987) in the analysis of a coffee-aroma extract obtained by distillation-extraction and concentration (2.0 5.0 ppm in coffee). Procida et al. (1987) detected this ketoester in a roasted arabica but in none of the green coffees that they studied. Ramos et al. (1998) found it in a brew only after liquid-liquid extraction with pentane or methylene chloride. [Pg.174]

Two examples are mentioned here to illustrate how IR spectroscopy can be used to obtain structural information about SAMs The molecular structure of a thiol-substituted carotenoid (see Sect. 4.3.7) was investigated by IR spectroscopy. Comparison of the IR spectrum of the carotenoid in the KBr matrix with that in the SAM shows the peak frequencies to be slightly higher... [Pg.290]

Other advances in the use of IR spectroscopy are (1) The substitution of sulfur by selenium, for comparison with the spectra of benzimidazole-, benzoxazole-, and benzothiazole-2-thiones 72 (80AJC279). (2) The use of IR, as a quantitative tool to determine the association (homo- and heterodimers) of thia- and oxa-diazolin-5-thiones and -5-ones 73 (80NJC527). [Pg.47]

In recent years, infrared spectroscopy has been enhanced by the possibility of applying Fourier transform techniques to it. This improved spectroscopic technique, known as Fourier transform infrared spectroscopy (FTIR), is of much greater sensitivity than conventional dispersive IR spectroscopy (Skoog West, 1980). Moreover, use of the Fourier transform technique enables spectra to be recorded extremely rapidly, with scan times of only 0-2 s. Thus it is possible to record spectra of AB cements as they set. By comparison, conventional dispersive IR spectroscopy requires long scan times for each spectrum, and hence is essentially restricted to examining fully-set cements. [Pg.364]

However, the comparison of the whole series of experimental facts involving IR-spectroscopy of adsorption of molecular and atomic hydrogen as well as the change in electric conductivity of adsorbent is indicative of a more complex phenomenon. For instance, in paper [97] both the spectra of adsorption of adsorbed molecular hydrogen were studied together with those of hydrogen atoms adsorbed from gaseous phase. In case when H2 are adsorbed in a dissociative manner one would have expected a manifestation of the same bands 3498 and 1708 cm or at least one of them inherent to adsorption of H-atoms in the spectrum of ZnO. [Pg.141]

Applications Applications of UV/VIS spectrophotometry can be found in the areas of extraction monitoring and control, migration and blooming, polymer impregnation, in-polymer analysis, polymer melts, polymer-bound additives, purity determinations, colour body analysis and microscopy. Most samples measured with UV/VIS spectroscopy are in solution. However, in comparison to IR spectroscopy additive analysis in the UV/VIS range plays only a minor role as only a limited class of compounds exhibits specific absorption bands in the UV range with an intensity proportional to the additive concentration. Characteristic UV absorption bands of various common polymer additives are given in Scheirs [24],... [Pg.307]

The scope of UV analysis of dissolved polymer/additive matrices is thus quite restricted and mainly limited to special cases in which the additive package is known, e.g. the determination of Irganox 1098 in GFR-PA4.6 after dissolution in H2SO4/HNO3. Fibre-optic dissolution analysis by means of a UV diode array spectrometer is well known. In comparison to IR spectroscopy, UV spectrophotometry is better equipped to provide quantitative data. [Pg.696]

As discussed earlier under Section 2.3, Carbonyl index, in one relatively recent comparison of the photo-oxidative and thermal (oven-aged) degradation behaviour of different polyethylenes, additive free grades of a metallocene (mPE), an HDPE and a linear low-density PE (LLDPE) were analysed by a combination of mid-IR spectroscopy, TGA and CL [13]. The mid-IR... [Pg.403]

The extent of homogeneous mixing of pharmaceutical components such as active drug and excipients has been studied by near-IR spectroscopy. In an application note from NIRSystems, Inc. [47], principal component analysis and spectral matching techniques were used to develop a near-IR technique/algorithm for determination of an optimal mixture based upon spectral comparison with a standard mixture. One advantage of this technique is the use of second-derivative spectroscopy techniques to remove any slight baseline differences due to particle size variations. [Pg.81]

From the Co EXAFS results alone one cannot conclude whether the Co atoms are located at edges or basal planes but a comparison of the Co EXAFS data with the above Mo EXAFS results indicates that the edge position is the most likely one. This Co location is illustrated in Figure T For the unsupported catalysts, many of these "surface" positions may be present at internal edges (i.e., at the "domain" boundaries). Recently, direct evidence confirming the edge position has been obtained by combining MES results (to ensure that Co is present as Co-Mo-S in the samples studied) with ir spectroscopy (lU) or with analytical electron microscopy (l ) ... [Pg.88]

Precisely in the domain of analysis by physico chemical property IR-spectroscopy offers a far more characteristic, valid and qualified proof of identity than the comparison of any other physical property. [Pg.335]

IR spectroscopy is useful for the identification of some of the functional groups in an organic molecule. The technique also provides a fingerprint of the molecule and its comparison with authentic specimen often confirms the structure of that molecule. The IR spectra of AHLs show characteristic absorption peaks at 1780,1710,1650 cm-1 arising from the lactone ring, 3-oxo (when present), and amide carbonyl, respectively [15,16]. [Pg.304]

In comparison, no structural modification of model B was seen before 120 h of aging (80 °C). However, after 120 h two small doublets appeared in the NMR spectrum and several additional peaks became noticeable in the NMR spectrum. It was determined by NMR and IR spectroscopy that the hydrolysis products were an imide/carboxylic acid and an imide/anhydride. Model B was then aged for 1200 h at 80 °C to quantitatively determine the amount of hydrolysis products as a function of time. The relative intensity of the peaks due to carboxylic acid is constant after some time. The authors suggest that an equilibrium occurs between model B and the products formed during hydrolysis, and therefore, the conversion to hydrolysis products is limited to about 12%. This critical fraction is probably enough to cause some degradation of polymeric materials, but research on six-membered polyimides has remained active. [Pg.359]

The kinetics of these reactions in comparison with those for methylenecyclo-propane analogs of compounds 160 have been studied by following the progress at pressures up to 3 kbar by on-line FT-IR spectroscopy [129]. The rate-enhancing influence of the additional strain in 160 overcompensates the expected retarding effect of the increased steric shielding by the second cyclopropane unit in 1 compared to methylenecyclopropane, and the cyclization rates for compounds 160 were faster by a factor of 6.8 to 8.1 in comparison with the corresponding methylenecyclopropane derivatives. [Pg.122]

In comparison, photolysis of 83 in protic solvents such as methanol, ethanol, and water yields 84 as expected, but 84 forms mainly 87 rather than 85. Furthermore, in these solvents, the transient absorption (Amax 425 nm) due to 84 decays not with a second-order rate law but by biexponential decay. For example, the decay of transient absorption of 84 (A ax 420 nm) in water at pH 7 had rate constants of 2 x 10 and 3 x lO s Subsequent to the decay of 84, a transient absorption was formed with Amax 330 nm and a weak absorption band at 740 nm. However, this transient was formed much slower than 84 decayed. The absorption at 330 nm was described as a biexponential growth with rate constants of 584 and 21 s h The authors assigned this absorption to 88. Since 84 and 88 do not form and decay at the same rate, the authors theorized that 84 decays into 87, which then furnishes 88. Even though intermediate 87 does not absorb in the near UV, the authors characterized it with time-resolved IR spectroscopy. The authors demonstrated that, in hexane and a strongly acidic or basic aqueous solution, the photorelease from 83 goes through the formation of 87, whereas in near neutral aqueous solution, formation of 85 predominates. The authors concluded that the dehydration of intermediates 85 and... [Pg.68]


See other pages where IR spectroscopy, comparison is mentioned: [Pg.282]    [Pg.297]    [Pg.282]    [Pg.297]    [Pg.1307]    [Pg.21]    [Pg.80]    [Pg.17]    [Pg.131]    [Pg.46]    [Pg.301]    [Pg.315]    [Pg.317]    [Pg.324]    [Pg.150]    [Pg.147]    [Pg.742]    [Pg.237]    [Pg.58]    [Pg.78]    [Pg.199]    [Pg.507]    [Pg.438]    [Pg.170]    [Pg.214]    [Pg.40]    [Pg.2]    [Pg.427]    [Pg.67]    [Pg.155]    [Pg.146]    [Pg.23]    [Pg.140]    [Pg.21]   


SEARCH



© 2024 chempedia.info