Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic tetrafluoroborate

For very strong acids, it is usually possible to use a solvent of a more conventional kind thus, for example, the acid HBF, tetra fluoroboric acid, is extremely strong, because attachment of the hydrogen to the tetrafluoroborate group BF is essentially ionic, H BF and hence dissociation to an acid is very easy. Hence HBF behaves as a strong acid in, for example, an organic solvent, in which it can be used. [Pg.89]

In the course of my studies I also introduced silver tetrafluoroborate, AgBp4, as a metathetic cation forming agent suitable for forming varied ionic (electrophilic) reagents. [Pg.59]

In the iavestigation of the decomposition reaction of aryldia2onium tetrafluoroborates ia nitroben2ene, it was found that ia addition to uoroben2ene, 3,3 -dinitrobiphenyl was formed (67). An ionic type of arylation reaction seems to take place. Decomposition of aryldia2onium tetrafluoro-, tetrachloro-, and tetrabromoborates ia aromatic solvents leads to electrophilic ring arylation (68). [Pg.556]

The introduction of the more hydrolysis-stable tetrafluoroborate [2] and hexaflu-orophosphate systems [3], and especially the development of their synthesis by means of metathesis from alkali salts [4], can be regarded as a first key step towards commercial ionic liquid production. [Pg.22]

The future price of ionic liquids will also reflect intellectual property considerations. While the currently most frequently requested ionic liquids, the tetrafluoroborate and hexafluorophosphate ionic liquids, are all patent-free, many recently developed, new ionic liquid systems are protected by state of matter patents. Table 2.2-2 gives an overview of some examples published after 1999. [Pg.31]

Without a doubt, tetrafluoroborate and hexafluorophosphate ionic liquids have shortcomings for larger-scale technical application. The relatively high cost of their anions, their insufficient stability to hydrolysis for long-term application in contact with water (formation of corrosive and toxic HF during hydrolysis ), and problems related to their disposal have to be mentioned here. New families of ionic liquid that should meet industrial requirements in a much better way are therefore being developed. FFowever, these new systems will probably be protected by state of matter patents. [Pg.32]

The choice of the anion ultimately intended to be an element of the ionic liquid is of particular importance. Perhaps more than any other single factor, it appears that the anion of the ionic liquid exercises a significant degree of control over the molecular solvents (water, ether, etc.) with which the IL will form two-phase systems. Nitrate salts, for example, are typically water-miscible while those of hexaflu-orophosphate are not those of tetrafluoroborate may or may not be, depending on the nature of the cation. Certain anions such as hexafluorophosphate are subject to hydrolysis at higher temperatures, while those such as bis(trifluoromethane)sulfonamide are not, but are extremely expensive. Additionally, the cation of the salt used to perform any anion metathesis is important. While salts of potassium, sodium, and silver are routinely used for this purpose, the use of ammonium salts in acetone is frequently the most convenient and least expensive approach. [Pg.35]

Figure 3.1-4 shows the changes in liquefaction points (either melting points or glass transitions) for a series of l-allcyl-3-methylimida2olium tetrafluoroborate [26] and bis(trifyl)imide [45] ionic liquids with changing length of the linear alkyl-substituent on the N(3)-position. [Pg.51]

Another means of in situ metal-carbene complex formation in an ionic liquid is the direct oxidative addition of the imidazolium cation to a metal center in a low oxidation state (see Scheme 5.2-2, route b)). Cavell and co-workers have observed oxidative addition on heating 1,3-dimethylimidazolium tetrafluoroborate with Pt(PPli3)4 in refluxing THF [32]. The Pt-carbene complex formed can decompose by reductive elimination. Winterton et al. have also described the formation of a Pt-car-bene complex by oxidative addition of the [EMIM] cation to PtCl2 in a basic [EMIM]C1/A1C13 system (free CP ions present) under ethylene pressure [33]. The formation of a Pt-carbene complex by oxidative addition of the imidazolium cation is displayed in Scheme 5.2-4. [Pg.224]

The first successful hydrogenation reactions in ionic liquids were studied by the groups of de Souza [45] and Chauvin [46] in 1995. De Souza et al. investigated the Rh-catalyzed hydrogenation of cyclohexene in l-n-butyl-3-methylimidazolium ([BMIM]) tetrafluoroborate. Chauvin et al. dissolved the cationic Osborn complex [Rh(nbd)(PPh3)2][PFg] (nbd = norbornadiene) in ionic liquids with weakly coordinating anions (e.g., [PFg] , [BFJ , and [SbF ] ) and used the obtained ionic catalyst solutions for the biphasic hydrogenation of 1-pentene as seen in Scheme 5.2-7. [Pg.229]

The authors correlate the observed catalytic activity with the solubility of the 1,3-butadiene feedstock in the ionic liquid, which was found to be twice as high in the tetrafluoroborate ionic liquid as in the corresponding hexafluorophosphate system. It is noteworthy that the same reaction in a monophasic systems with toluene as the solvent was found to be significantly less active (TOF = 240 h ... [Pg.252]

The electrodeposition of Ag has also been intensively investigated [41 3]. In the chloroaluminates - as in the case of Cu - it is only deposited from acidic solutions. The deposition occurs in one step from Ag(I). On glassy carbon and tungsten, three-dimensional nucleation was reported [41]. Quite recently it was reported that Ag can also be deposited in a one-electron step from tetrafluoroborate ionic liquids [43]. However, the charge-transfer reaction seems to play an important role in this medium and the deposition is not as reversible as in the chloroaluminate systems. [Pg.302]

Anions are just as varied as the cations, and more than 250 different ionic liquids with different anion/cation combinations are commercially available. Hexafluorophosphate, tetrafluoroborate, alkyl sulfates, trifluoromethane-sulfonates (Inflates), and halides are some anion possibilities. [Pg.956]

Lipases from C. antarctica and P. cepacia showed higher enantioselectivity in the two ionic liquids l-ethyl-3-methylimidazolium tetrafluoroborate and l-butyl-3-methylimidazolium hexafluoroborate than in THE and toluene, in the kinetic resolution of several secondary alcohols [49]. Similarly, with lipases from Pseudomonas species and Alcaligenes species, increased enantioselectivity was observed in the resolution of 1 -phenylethanol in several ionic liquids as compared to methyl tert-butyl ether [50]. Another study has demonstrated that lipase from Candida rugosa is at least 100% more selective in l-butyl-3-methylimidazolium hexafluoroborate and l-octyl-3-nonylimidazolium hexafluorophosphate than in n-hexane, in the resolution of racemic 2-chloro-propanoic acid [51]. [Pg.15]

Unlike such unstable intermediates, the first, rare example of reversible dissociation of a carbon-carbon a bond into a stable carbocation and carbanion was reported for a nitro-dicyano compound (20) prepared from trimethyl- and triphenyl-cyclopropenylium tetrafluoroborate ([4" ]BF4 and [5 JBFJ) with the potassium salt of p-substituted-phenylmalononitrile anions (Arnett et al., 1983 Troughton et al., 1984 Arnett and Molter, 1985). Other ionically dissociative malononitrile derivatives have been prepared from such carbocations as the tropylium [S ] (Arnett and Troughton, 1983) and the tris(p-methoxyphenyl)methylium [93 j (Arnett and Troughton, 1983) ions. [Pg.191]

The anion in an ionic liquid can be varied, too. Many ionic liquids contain relatively simple inorganic anions, such as nitrate (NO3 ), tetrafluoroborate (BF4 ), or hexafluorophosphate (PFg ). Anions that are more exotic also are possible, such as the two shown below. Varying the anion provides another way of tuning the properties of an ionic liquid to match a desired application. [Pg.1111]

Room-temperature ionic liquids have received much attention as green designer solvents. We first demonstrated that ionic liquids acted as good medium for lipase-catalyzed production of polyesters. The polycondensation of diethyl adipate and 1,4-butanediol using lipase CA as catalyst efficiently proceeded in l-butyl-3-methylimidazolinium tetrafluoroborate or hexafluorophosphate under reduced pressure. The polymerization of diethyl sebacate and 1,4-butanediol in l-butyl-3-methylimidazolinium hexafluorophosphate took place even at room temperature in the presence of lipase BC. ... [Pg.218]

Hydroformylation of alkenes can be carried out in a few minutes under microwave activation at a relatively low pressure (2.7 bar) employing the rhodium(I)/XANTPHOS catalyst. The presence of the ionic liquid butyl-methylimdazolium tetrafluoroborate ([bmim][BF4]) was crucial. Unfortu-... [Pg.155]

As reported by Griengl and coworkers, benzaldehyde, decanal, undecanal, and dodecanal were reacted with HCN in a two-phase solvent system aqueous buffer and ionic liquids 1 -ethyl-3-methylimidazolium tetrafluoroborate, 1 -methyl-3-propylimidazolium tetrafluoroborate, and l-butyl-3-methyl-imidazolium tetrafluoroborate in the presence of the HNLs from Prunus amygdalus and Hevea brasiliensis. When compared with the use of organic solvents as the nonaqueous phase, the reaction rate was significantly increased and the enantioselectivity remained good [51]. [Pg.112]

The anodic oxidation of the tetrafluoroborate anion occurs at potentials higher than 2.1 V and the remaining hexafluorophosphate and imide anions are oxidised at potentials higher than 2.0 V. Hence, the stability window of the EMImBF4 and BMImBF4 is 4.2 V. Ionic liquids BMImPF6 and EMImN(Tf)2 shows a similar stability window of ca. 4.1 V. However, the window of the BMPyN(Tf)2, is considerably lower ca. 3.0 V. This is consistent with data (ca. 4.1-4.2 V) found for a series of ionic liquids based on EMIm+ and DMPIm+ (l,2-dimethyl-3-propylimidazolium) cations [12],... [Pg.103]

Alkylation at nitrogen has been achieved by treating indole or pyrrole with alkyl halides in ionic solutions of potassium carbonate in l- -butyl-3-methylimidazolium tetrafluoroborate [bmim][BFJ <06TL2435>. Bis-protection of 3,3 -diiodo-2,2 -biindoles with Me, Boc, C02Et, or S02Ph has been described by Roy and Gribble <06SC3487>. [Pg.158]

A basic ionic liquid, l-methyl-3-butylimidazolium hydroxide ([bmIm]OH) and l-butyl-3-methyl-methylimidazolium tetrafluoroborate ([bmim]BF4), has been introduced as a catalyst and reaction medium for the Markovnikov addition of imidazoles 116 to vinyl esters 115 under mild conditions to give imidazoesters 117 <06JOC3991 06TL1555>. A series of (nitroimidazolyl)succinic esters and diacids were prepared from the Michael-type addition of the nitroimidazole to the a,P-unsaturated ester <06S3859>. [Pg.223]

One of the important new directions in the study of addition reactions of organozinc compounds to aldehydes is the use of ionic liquids. Usually, application of these compounds in reactions with common organometallic reagents has a serious problem ionic solvents are usually reactive toward them, particularly Grignard and organolithium derivatives. It has been recently reported that carbonyl compounds react with allylzinc bromide formed in situ from allyl bromide and zinc in the ionic liquid 3-butyl-l-methylimidazolium tetrafluoroborate, [bmim][BF4].285 Another important finding is that the more reactive ZnEt2 alkylates aldehydes in a number of ionic liquids at room temperature.286 The best yields (up to 96%) were obtained in A-butylpyridinium tetrafluoroborate, [bpy][BF4] (Scheme 107). [Pg.387]


See other pages where Ionic tetrafluoroborate is mentioned: [Pg.55]    [Pg.2931]    [Pg.55]    [Pg.2931]    [Pg.5]    [Pg.25]    [Pg.29]    [Pg.51]    [Pg.96]    [Pg.145]    [Pg.201]    [Pg.214]    [Pg.216]    [Pg.330]    [Pg.338]    [Pg.218]    [Pg.116]    [Pg.118]    [Pg.866]    [Pg.1112]    [Pg.382]    [Pg.20]    [Pg.17]    [Pg.195]    [Pg.88]    [Pg.360]    [Pg.143]    [Pg.225]    [Pg.109]    [Pg.179]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



1- Butyl-3-methylimidazolium tetrafluoroborate ionic liquid[bmim

Imidazole-based ionic liquids tetrafluoroborate

Ionic liquid , l-Butyl-3-methylimidazolium tetrafluoroborate

Tetrafluoroborate ionic liquid

© 2024 chempedia.info