Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic solvents, thermodynamic

All equilibrium constants in the present discussion are based on the concentration (not activity) scale. This is a perfectly acceptable thermodynamic scale, provided the ionic strength of the solvent medium is kept fked at a reference level (therefore, sufficiently higher than the concentration of the species assayed). This is known as the constant ionic medium thermodynamic state. Most modern results are determined at 25 °C in a 0.15 M KCl solution. If the ionic strength is changed, the ionization constant may be affected. For example, at 25 °C and 0.0 M ionic strength, the pXj of acetic acid is 4.76, but at ionic strength 0.15 M, the value is 4.55 [24]. [Pg.59]

It should also be mentioned here that many of the chemical reactions which have been "explained with the HSAB model (2) occur in polar solvents and many involve the formation of ionic species. Thermodynamic cycles can be constructed for these reactions which show how many different kinds of effects are operative. When one considers that much of the data involve rate constant and equilibrium constant measurements, the explanation of this data becomes even more complex for there are entropy terms as well as enthalpy terms for all the steps in any cycle that is constructed. Even less information is available concerning these steps than we had above for the coordination model yet explanations are offered based solely on one step (4) — the strength of the bonding. [Pg.76]

The values of AHs determined from the constructed plots are 54 (NaCl), 120 (KC1), 200 (RbCl) and 224 (CsCl) kJ mol-1. The experimental data show that there is no appreciable interaction of the dissolved MgO with the ionic solvent, i.e. from the viewpoint of chemical thermodynamics, the formation of Mg2+ + O2- ions in the melt is less favourable than the dissolution of the solid in the form of MgO. [Pg.321]

Of all uranium species existing in solutions those containing uranium in the oxidation state d-5 (normally in the form of U02 moieties) are the least studied. Aqueous solutions of U02 are prone to disproportionation, with the carbonato-complex 002(003)3 being the best known. A number of uranium(V) complexes were characterised in organic solvents [1]. In solutions uranium(V) species are most stable in ionic solvents including molten salts. In the chloride-based melts uranyl(V) chloro-complexes were reported over half of a century ago [2, 3] and their electrochemical, thermodynamic and structural properties have subsequently been studied to a certain extent [4-9]. [Pg.507]

Therefore, the information concerning the physicochemical parameters of the reactions of oxide ions and oxo-compounds in high-temperature ionic solvents (melts) is of considerable scientific and applied science importance. Below, data are presented on both thermodynamics of reactions of oxocompounds in ionic melts and kinetics of purification processes of halide melts from oxide ion traces. [Pg.500]

The protonation equilibria for nine hydroxamic acids in solutions have been studied pH-potentiometrically via a modified Irving and Rossotti technique. The dissociation constants (p/fa values) of hydroxamic acids and the thermodynamic functions (AG°, AH°, AS°, and 5) for the successive and overall protonation processes of hydroxamic acids have been derived at different temperatures in water and in three different mixtures of water and dioxane (the mole fractions of dioxane were 0.083, 0.174, and 0.33). Titrations were also carried out in water ionic strengths of (0.15, 0.20, and 0.25) mol dm NaNOg, and the resulting dissociation constants are reported. A detailed thermodynamic analysis of the effects of organic solvent (dioxane), temperature, and ionic strength on the protonation processes of hydroxamic acids is presented and discussed to determine the factors which control these processes. [Pg.40]

All stated pK values in this book are for data in dilute aqueous solutions unless otherwise stated, although the dielectric constants, ionic strengths of the solutions and the method of measurement, e.g. potentiometric, spectrophotometric etc, are not given. Estimated values are also for dilute aqueous solutions whether or not the material is soluble enough in water. Generally the more dilute the solution the closer is the pK to the real thermodynamic value. The pK in mixed aqueous solvents can vary considerably with the relative concentrations and with the nature of the solvents. For example the pK values for V-benzylpenicillin are 2.76 and 4.84 in H2O and H20/EtOH (20 80) respectively the pK values for (-)-ephedrine are 9.58 and 8.84 in H2O and H20/Me0CH2CH20H (20 80) respectively and for cyclopentylamine the pK values are 10.65 and 4.05 in H2O and H20/EtOH (50 50) respectively. pK values in acetic acid or aqueous acetic acid are generally lower than in H2O. [Pg.8]

Entries 7, 8, and 10 describe so-called Idnetically controlled syntheses starting from activated substrates such as ethyl esters or lactose. In two reaction systems it was possible to demonstrate that ionic liquids can also be useful in a thermodynamically controlled synthesis starting with the single components (Entry 11) [39]. In both cases, as with the results presented in entry 6, the ionic liquids were used with addition of less than 1 % water, necessary to maintain the enzyme activity. The yields observed were similar or better than those obtained with conventional organic solvents. [Pg.342]

The physical nature of the sulfate complexes formed by plutonium(III) and plutonium(IV) in 1 M acid 2 M ionic strength perchlorate media has been inferred from thermodynamic parameters for complexation reactions and acid dependence of stability constants. The stability constants of 1 1 and 1 2 complexes were determined by solvent extraction and ion-exchange techniques, and the thermodynamic parameters calculated from the temperature dependence of the stability constants. The data are consistent with the formation of complexes of the form PuSOi,(n-2)+ for the 1 1 complexes of both plutonium(III) and plutonium(IV). The second HSO4 ligand appears to be added without deprotonation in both systems to form complexes of the form PuSOifHSOit(n"3) +. ... [Pg.251]

Since the ionic fluxes cannot be measured individually, it is preferable to introduce the salt flux, besides solvent flux and charge flux (current density). The driving forces would then be the gradients or differences of the chemical potentials in media with different salt concentrations and different pressures, multiplied by -1. These differences must be relatively small to remain within the framework of linear irreversible thermodynamics, so that... [Pg.432]

When the gas-phase reactions, such as the relative acidities or basicities were compared with their counterparts in solution (in a solvent such as water) it was generally found16,17 that the energetics in the solvent were strongly affected by solvation effects and particularly the solvation of the ionic reactants. Relationships between the gas-phase and solution-phase reactions and the solvation energies of the reactants are generally obtained through thermodynamic cycles. From the cycle,... [Pg.258]

Reactions in solution proceed in a similar manner, by elementary steps, to those in the gas phase. Many of the concepts, such as reaction coordinates and energy barriers, are the same. The two theories for elementary reactions have also been extended to liquid-phase reactions. The TST naturally extends to the liquid phase, since the transition state is treated as a thermodynamic entity. Features not present in gas-phase reactions, such as solvent effects and activity coefficients of ionic species in polar media, are treated as for stable species. Molecules in a liquid are in an almost constant state of collision so that the collision-based rate theories require modification to be used quantitatively. The energy distributions in the jostling motion in a liquid are similar to those in gas-phase collisions, but any reaction trajectory is modified by interaction with neighboring molecules. Furthermore, the frequency with which reaction partners approach each other is governed by diffusion rather than by random collisions, and, once together, multiple encounters between a reactant pair occur in this molecular traffic jam. This can modify the rate constants for individual reaction steps significantly. Thus, several aspects of reaction in a condensed phase differ from those in the gas phase ... [Pg.146]

The thermodynamic stability of a complex ML formed from an acceptor metal ion M and ligand groups L may be approached in two different but related ways. (The difference between the two approaches lies in the way in which the formation reaction is presented.) Consistent with preceding sections, an equilibrium constant may be written for the formation reaction. This is the formation constant Kv In a simple approach, the effects of the solvent and ionic charges may be ignored. A stepwise representation of the reaction enables a series of stepwise formation constants to be written (Table 3.5). [Pg.43]

Table 9 compares ionic enthalpies of hydration from the Bernal and Fowler,164 Latimer et al.165 and Rashin and Honig88 procedures. Given the inherent uncertainty, the latter two sets of data are remarkably similar, considering that they were obtained 46 years apart. A number of tabulations of the thermodynamic solvation properties of ions in various solvents have now appeared. It is important to keep in mind, however, that there is a degree of arbitrariness associated with the experimental AHsoivation and AGSoiVation of individual ions. [Pg.60]

Some other theoretical aspects of ionic solvation have been reviewed in the last few years. The interested reader is referred to them ionic radii and enthalpies of hydration 20>, a phenomenological approach to cation-solvent interactions mainly based on thermodynamic data 21>, relationship between hydration energies and electrode potentials 22>, dynamic structure of solvation shells 23>. Brief reviews, monographs, and surveys on this subject from a more or less different point of view have also been published 24—28) ... [Pg.13]

Thus, room-temperature ionic liquids have the potential to provide environmentally friendly solvents for the chemical and pharmaceutical industries. The ionic liquid environment is very different from normal polar and nonpolar organic solvents both the thermodynamics and the kinetics of chemical reactions are different, and so the outcome of a reaction may also be different. Organic reactions that have been successfully studied in ionic liquids include Friedel-Crafts, Diels-Alder,Heck catalysis, chlorination, enzyme catalysis,polymeriz-... [Pg.113]

Plotting ixbase VS. pH gives a sigmoidal curve, whose inflection point reflects the apparent base-pAi, which may be corrected for ionic strength, I, using Equation 6.11 in order to obtain the thermodynamic pATa value in the respective solvent composition. Parameters A and B are Debye-Hiickel parameters, which are functions of temperature (T) and dielectric constant (e) of the solvent medium. For the buffers used, z = 1 for all ions ao expresses the distance of closest approach of the ions, that is, the sum of their effective radii in solution (solvated radii). Examples of the plots are shown in Figure 6.12. [Pg.332]

The important role of thermodynamics in complex formation, ionic medium effects, hydration, solvation, Lewis acid-base interactions, and chelation has been presented in this chapter. Knowledge of these factors are of great value in understanding solvent extraction and designing new and better extraction systems. [Pg.114]


See other pages where Ionic solvents, thermodynamic is mentioned: [Pg.24]    [Pg.112]    [Pg.2]    [Pg.206]    [Pg.35]    [Pg.307]    [Pg.518]    [Pg.293]    [Pg.908]    [Pg.1183]    [Pg.104]    [Pg.690]    [Pg.211]    [Pg.690]    [Pg.510]    [Pg.18]    [Pg.345]    [Pg.774]    [Pg.168]    [Pg.18]    [Pg.60]    [Pg.123]    [Pg.332]    [Pg.261]    [Pg.132]    [Pg.135]    [Pg.88]    [Pg.14]    [Pg.204]    [Pg.151]    [Pg.300]   


SEARCH



Ionic solvent

© 2024 chempedia.info