Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic bond conduction

Ionic bonding was proposed by the German physicist Walther Kossel in 1916 in or der to explain the ability of substances such as molten sodium chloride to conduct an electric current He was the son of Albrecht Kossel winner of the 1910 Nobel Prize in physiology or medi cine for early studies in nu cleic acids... [Pg.12]

Ionic bond, 287, 288 dipole of, 288 in alkali metal halides, 95 vs. covalent, 287 Ionic character, 287 Ionic crystal, 81, 311 Ionic radius, 355 Ionic solids, 79, 81, 311 electrical conductivity, 80 properties of, 312 solubility in water, 79 stability of, 311... [Pg.460]

In semi-conducting compounds, we know that some of the electrons form bonds between the cation and the anion, either as covalent or ionic bonds (or somewhere in between). What happens to the rest Do they remeun around the parent atom Why are some solids conductive while others are not The following discussion addresses these questions. Obviously, we cannot be exhaustive but we can examine the main features of each phenomenon to show what happens in the solid. We will not derive the equations associated with each subject. This aspect is left to more advanced studies. [Pg.303]

As already mentioned, the criterion of complete ionization is the fulfilment of the Kohlrausch and Onsager equations (2.4.15) and (2.4.26) stating that the molar conductivity of the solution has to decrease linearly with the square root of its concentration. However, these relationships are valid at moderate concentrations only. At high concentrations, distinct deviations are observed which can partly be ascribed to non-bonding electrostatic and other interaction of more complicated nature (cf. p. 38) and partly to ionic bond formation between ions of opposite charge, i.e. to ion association (ion-pair formation). The separation of these two effects is indeed rather difficult. [Pg.34]

The ions that conduct the electrical current can result from a couple of sources. They may result from the dissociation of an ionically bonded substance (a salt). If sodium chloride (NaCl) is dissolved in water, it dissociates into the sodium cation (Na+) and the chloride anion (CL). But certain covalently bonded substances may also produce ions if dissolved in water, a process called ionization. For example, acids, both inorganic and organic, will produce ions when dissolved in water. Some acids, such as hydrochloric acid (HC1), will essentially completely ionize. Others, such as acetic acid (CH3COOH), will only partially ionize. They establish an equilibrium with the ions and the unionized species (see Chapter 13 for more on chemical equilibrium). [Pg.183]

On the basis of an IR study of some s-triazines and HA systems, several authors reported that ionic bonding took place between a protonated secondary amino group of the s-triazine and a carboxylate anion on the HA [17,146,147]. Successive studies, mainly conducted by IR spectroscopy, confirmed previous results and also provided evidence for the possible involvement of the acidic phenol-OH of HA in the proton exchange of the s-triazine molecule [17, 146-150]. Differential thermal analysis (DTA) curves measured by Senesi and Testini [146, 147] showed an increased thermal stability of the HA-s-triazine complexes, thus confirming that ionic binding took place between the interacting products. [Pg.133]

Conductivity Metals are good conductors of electricity and heat because electrons can move freely throughout the metallic structure. This freedom of movement is not possible in solid ionic compounds, because the valence electrons are held within the individual ionic bonds in the lattice. [Pg.170]

This chapter consists of two sections, one being a general discussion of the stable forms of the elements, whether they are metals or non-metals, and the reasons for the differences. The theory of the metallic bond is introduced, and related to the electrical conduction properties of the elements. The second section is devoted to a detailed description of the energetics of ionic bond formation. A discussion of the transition from ionic to covalent bonding in solids is also included. [Pg.145]

Diffusion in ionically bonded solids is more complicated than in metals because site defects are generally electrically charged. Electric neutrality requires that point defects form as neutral complexes of charged site defects. Therefore, diffusion always involves more than one charged species.9 The point-defect population depends sensitively on stoichiometry for example, the high-temperature oxide semiconductors have diffusivities and conductivities that are strongly regulated by the stoichiometry. The introduction of extrinsic aliovalent solute atoms can be used to fix the low-temperature population of point defects. [Pg.177]

Solids such as sodium chloride (NaCl) and zinc chloride (ZnCl2) are made of ions that are held together by the attractive force of these oppositely charged particles. If ionic solids are dissolved in water, their ions are separated and can conduct an electric current. This physical property of ionic solids can be used to decide if a solid is held together by ionic bonds. [Pg.182]

Liquids formed from covalently bonded solids are different from ionic-bond solids in another way as well. Covalently bonded liquids do not contain free-floating charged particles. Instead, they contain tightly-bonded, self-contained, neutral molecules. As a result, a liquid produced from a covalently bonded solid does not conduct electricity well at all. These liquids are good insulators. [Pg.54]

Ionic solids contain ions held together by ionic bonds. These solids are typically hard and have high melting points. They are often soluble in water, but insoluble in organic solvents. They do not conduct electricity in the solid state, but do so both in aqueous solutions and in pure molten form. (Use a solid like calcium sulfate as an ionic solid, which is not soluble in water.)... [Pg.125]

The carbon-metal bond in such compounds can range from an almost completely ionic bond to one that is predominantly covalent. Benzyl-sodium, for example, may be dissolved in ether to yield a conducting solution on the other hand, the lithium-carbon bond in the colorless ethyliithium is quite nonpolar. The chemistry of such compounds, be they ionic or covalent, is best understood by considering them as sources of the highly basic carbanions that would be formed by removal of the metal ion thus the chemistry of benzylsodium is the chemistry of the CeH CH ion, whereas the chemistry of ethyliithium is the chemistry of the ethide ion, C2H Such ions will attack acidic hydrogens to form the parent hydrocarbons, will attack the more positive end of a double bond, and can carry out a number of nucleophilic displacements these reactions are discussed in texts on organic chemistry. [Pg.103]

You can explain the conductivity of covalent and ionic compounds using an understanding of covalent and ionic bonding. [Pg.107]

For the heavier elements As, Sb, and Bi, further diversity in structure and stoichiometry is found. The ionic bond model becomes less useful as these species may be thought of as intermetallics, possessing metallic luster, and conduction or semiconduction properties. Typical examples include Na3Bi and NaBi, which becomes superconducting at low temperatures (<2.5 K). Further details will be found in the relevant article for each element, As, Sb, and Bi. Zintl anions of these elements are also known. ... [Pg.68]

The plot for MgO (Figure 8.5a) is typical of a main group metal oxide which fits with the classical ionic bonding model of oxide structures. The lower valence band (LVB) consists almost exclusively of 0(2s) states and the UVB of 0(2p) states. In the conduction band (CB) both Mg and O basis functions contribute to the crystal orbitals. The valence bands are completely filled and, since they have mainly O character, this corresponds to complete transfer of valence electrons from Mg to O to give the ionic species Mg and... [Pg.344]


See other pages where Ionic bond conduction is mentioned: [Pg.66]    [Pg.168]    [Pg.226]    [Pg.312]    [Pg.295]    [Pg.93]    [Pg.42]    [Pg.174]    [Pg.262]    [Pg.163]    [Pg.4]    [Pg.589]    [Pg.316]    [Pg.646]    [Pg.385]    [Pg.4]    [Pg.68]    [Pg.156]    [Pg.127]    [Pg.21]    [Pg.245]    [Pg.247]    [Pg.394]    [Pg.588]    [Pg.195]    [Pg.82]    [Pg.584]    [Pg.1127]   
See also in sourсe #XX -- [ Pg.211 ]




SEARCH



Bond ionicity

Bonding ionic

Bonding ionicity

Bonds ionic

Ionic bond bonding

Ionic conductance

Ionic conducting

Ionic conduction

Ionic conductivity

Ionically bonded

© 2024 chempedia.info