Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine melting point

Iodine (melting point 113.5°C, boiling point 184.4°C, density 4.93) is a red to purple solid that sublimes readily under ambient conditions. Iodine can be produced from iodates (Fig. 1) ... [Pg.276]

Iodine handling appeared to require extreme care to avoid condensation and clogging. In particular, it proved difficult to consistently and routinely melt and flow the pure iodine which is fed to the Bunsen section. Special care must therefore be given to temperature control in order to make sure all points remain above iodine melting point, including during start-up and shutdown transients. [Pg.172]

Physical characteristics Solid metallic appearance like iodine melting point greater than 114°C. [Pg.241]

Wax Melting point, °C Specific gravity (15°C/15°C) Refractive index Acid value Saponification value Iodine value... [Pg.1077]

Castor Wax. Castor wax [8001-78-3] is catalyticahy hydrogenated castor bean oil. The wax has a melting point of 86°C, acid number of 2, saponification number of 179, and an iodine number of 4. Castor wax is used primarily in the formulation of cosmetics. Derivatives of castor wax are used as surfactants and plastics additives. [Pg.315]

Bayberry Wax. Bayberry wax [8038-77-5] is removed from the surface of the berry of the bayberry (myrtle) shmb by boiling the berries in water and skimming the wax from the surface of the water. The wax is green and made up primarily of lauric, myristic, and palmitic acid esters. The wax has a melting point of 45°C, an acid number of 15, a saponification number of 220, and an iodine number of 6. The wax has an aromatic odor and is used primarily in the manufacture of candles and other products where the distinctive odor is desirable. [Pg.315]

Imidazole, 4-methyl-annular tautomerism, 5, 363 association, 5, 362 boiling point, 5, 362 bromination, 5, 398 deuteration, 5, 417 diazo coupling, 5, 403 hydrogen bonding, S, 350 hydroxymethylation, 5, 404 iodination, 5, 400 kinetics, 5, 401 mass spectra, 5, 358 melting point, 5, 362 methylation, 5, 364 sulfonation, 5, 397 synthesis, 5, 479-480, 482, 484, 489 Imidazole, 5-methyl-annular tautomerism, 5, 363 Imidazole, l-methyl-4-chloro-ethylation, 5, 386 Imidazole, l-methyl-5-chloro-ethylation, 5, 386 nitration, 5, 395... [Pg.653]

Iodine (from the Greek, iodines, meaning violet) has an atomic weight of 126.9044, atomic number 53, melting point 113.5° C, and boiling point 184.35° C. As a gas,... [Pg.480]

One milliliter each of the borneol solution and the oxidizing solution are mixed in a test tube and briefly shaken. A TLC slide is spotted with the borneol solution, the camphor solution, and the ether layer of the reaction mixture. Spotting is done by means of a capillary melting point tube used as a dropper and filled with a 5 mm sample. The slide is developed in a wide-mouth jar containing a filter paper liner and a few milliliters of chloroform (Fig. A3.20). After development (the solvent front rises to within 1 cm of the top), the slide is removed, the solvent is allowed to evaporate, and the slide is placed in a covered wide-mouth jar containing a few crystals of iodine. The spots readily become visible and the progress of the reaction can easily be followed. With periodic shaking, the oxidation is complete in about 30 minutes. [Pg.187]

The crude iodinated acid was then dissolved in 500 ml of 95% alcohol, 10 g of dimethyl-aminoethanol was added, the solution was decolorized with activated charcoal and filtered at 70°C. After keeping the filtrate for several hours at 5°C, the heavy crystalline precipitate which formed was collected by filtration and washed with acetone. The mother liquors were concentrated to 150 ml and cooled to give a second crop which was further purified by recrystallization from 50 ml of 95% alcohol. In this way a total of 36.0 g of dimethyl-aminoethanol salt of dextro-/3-(3,5-diiodo-4-hydroxy)-o-phenylpropionic acid, MP 151° to 153°C, was obtained. The melting point of the dimethylaminoethanol salt of unresolved /3-(3,5-diiodo-4-hydroxy)-o-phenylpropionic acid was 142° to 144°C. [Pg.827]

When iodine chloride is heated to 27°C, the weak intermolecular forces are unable to keep the molecules rigidly aligned, and the solid melts. Dipole forces are still important in the liquid state, because the polar molecules remain close to one another. Only in the gas, where the molecules are far apart, do the effects of dipole forces become negligible. Hence boiling points as well as melting points of polar compounds such as Id are somewhat higher than those of nonpolar substances of comparable molar mass. This effect is shown in Table 9.3. [Pg.237]

We have, in this chapter, encountered a number of properties of solids. In Table 5-II, we found that melting points and heats of melting of different solids vary widely. To melt a mole of solid neon requires only 80 calories of heat, whereas a mole of solid copper requires over 3000 calories. Some solids dissolve in water to form conducting solutions (as does sodium chloride), others dissolve in water but no conductivity results (as with sugar). Some solids dissolve in ethyl alcohol but not in water (iodine, for example). Solids also range in appearance. There is little resemblance between a transparent piece of glass and a lustrous piece of aluminum foil, nor between a lump of coal and a clear crystal of sodium chloride. [Pg.80]

The polymerization of 1,3,3-trimethyl-2,7-dioxabicyclo[2.2.1 Jheptane 35 was carried out in methylene chloride, toluene, and 1-nitropropane at temperatures between —78 and 0 °C32l Boron trifluoride etherate, triethyloxonium tetrafluoro-borate, antimony pentachloride, and iodine were used as initiators. Irrespective of the solvents and initiators employed, the products obtained at 0 °C were white powders with melting points of 50—55 °C, while those obtained at tower temperatures were sirups. The number average molecular weight of the unfractionated products ranged from 400 to 600. The molecular weight distribution of the oligomers prepared at 0 °C was broad, in contrast to the relatively narrow distribution of those obtained at -40 °C. [Pg.60]

At room temperature, iodine (I2) is a solid and bromine (Br2) is a liquid. These molecules have different melting points because of stronger —... [Pg.18]

As one examines the periodic table, one discovers that the melting points of the alkali metals increase as one moves from cesium to lithium, whereas the melting points of the halogens increase from fluorine to iodine. [Pg.28]

Astatine is located just below iodine, which suggests that it should have some of the same chemical properties as iodine, even though it also acts more hke a metal or semimetal than does iodine. It is a fairly heavy element with an odd atomic number, which assisted chemists in learning more about this extremely rare element. The 41 isotopes are man-made in atomic reactors, and most exist for fractions of a second. The elements melting point is about 302°C, its boiling point is approximately 337°C, and its density is about 7g/cm. ... [Pg.258]

Black crystaUine solid exists in two modifications stable black needles known as alpha form that produces ruby-red color in transmitted light, and a labile, metastable beta modification consisting of black platelets which appear brownish-red in transmitted light density of alpha form 3.86 g/cm at 0°C density of beta form 3.66 g/cm at 0°C alpha form melts at 27.3°C, vapor pressure being 28 torr at 25°C beta form melts at 13.9°C hquid iodine monochloride has bromine-hke reddish-brown color hquid density 3.10 g/mL at 29°C viscosity 1.21 centipoise at 35°C decomposes around 100°C supercools below its melting point polar solvent as a hquid it dissolves iodine, ammonium chloride and alkali metal chlorides hquid ICl also miscible with carbon tetrachloride, acetic acid and bromine the solid crystals dissolve in ethanol, ether, acetic acid and carbon disulfide solid ICl also dissolves in cone. HCl but decomposes in water or dilute HCl. [Pg.403]


See other pages where Iodine melting point is mentioned: [Pg.352]    [Pg.443]    [Pg.359]    [Pg.359]    [Pg.360]    [Pg.154]    [Pg.438]    [Pg.538]    [Pg.652]    [Pg.656]    [Pg.26]    [Pg.132]    [Pg.22]    [Pg.853]    [Pg.1047]    [Pg.142]    [Pg.235]    [Pg.97]    [Pg.152]    [Pg.103]    [Pg.329]    [Pg.183]    [Pg.5]    [Pg.352]    [Pg.115]    [Pg.197]    [Pg.255]    [Pg.18]    [Pg.893]    [Pg.289]    [Pg.291]   
See also in sourсe #XX -- [ Pg.2 , Pg.139 , Pg.248 ]

See also in sourсe #XX -- [ Pg.2 , Pg.139 , Pg.248 ]




SEARCH



© 2024 chempedia.info