Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodide catalyst acetic anhydride production

The methyl acetate carbonylation process was successfully started and operated in the early 1980s as part of a coal-to-syngas-to-acetic anhydride complex. This new process introduction resulted in a major improvement in acetic anhydride production economics. In this process, methyl acetate, itself the product of a one-step esterification of acetic acid and methanol, is reacted with carbon monoxide in the presence of a promoted rhodium-iodide catalyst. Figure 22.20 illustrates this process... [Pg.823]

The unit has virtually the same flow sheet (see Fig. 2) as that of methanol carbonylation to acetic acid (qv). Any water present in the methyl acetate feed is destroyed by recycle anhydride. Water impairs the catalyst. Carbonylation occurs in a sparged reactor, fitted with baffles to diminish entrainment of the catalyst-rich Hquid. Carbon monoxide is introduced at about 15—18 MPa from centrifugal, multistage compressors. Gaseous dimethyl ether from the reactor is recycled with the CO and occasional injections of methyl iodide and methyl acetate may be introduced. Near the end of the life of a catalyst charge, additional rhodium chloride, with or without a ligand, can be put into the system to increase anhydride production based on net noble metal introduced. The reaction is exothermic, thus no heat need be added and surplus heat can be recovered as low pressure steam. [Pg.77]

Reppe reaction involves carbonylation of methanol to acetic acid and methyl acetate and subsequent carbonylation of the product methyl acetate to acetic anhydride. The reaction is carried out at 600 atm and 230°C in the presence of iodide-promoted cobalt catalyst to form acetic acid at over 90% yield. In the presence of rhodium catalyst the reaction occurs at milder conditions at 30 to 60 atm and 150-200°C. Carbon monoxide can combine with higher alcohols, however, at a much slower reaction rate. [Pg.189]

In addition to the successful reductive carbonylation systems utilizing the rhodium or palladium catalysts described above, a nonnoble metal system has been developed (27). When methyl acetate or dimethyl ether was treated with carbon monoxide and hydrogen in the presence of an iodide compound, a trivalent phosphorous or nitrogen promoter, and a nickel-molybdenum or nickel-tungsten catalyst, EDA was formed. The catalytst is generated in the reaction mixture by addition of appropriate metallic complexes, such as 5 1 combination of bis(triphenylphosphine)-nickel dicarbonyl to molybdenum carbonyl. These same catalyst systems have proven effective as a rhodium replacement in methyl acetate carbonylations (28). Though the rates of EDA formation are slower than with the noble metals, the major advantage is the relative inexpense of catalytic materials. Chemistry virtually identical to noble-metal catalysis probably occurs since reaction profiles are very similar by products include acetic anhydride, acetaldehyde, and methane, with ethanol in trace quantities. [Pg.147]

The catalyst is generally a palladium compound promoted with a trivalent amine or phosphine in the presence of methyl iodide as described earlier. Systems proven to bias acetaldehyde are utilized, of course (e.g. see Table I, run 12). A yield of 85% acetaldehyde from methyl acetate is typical by this method. It can be utilized in stoichiometric addition to easily prepared acetic anhydride resulting in EDA formation. When considering that the "boiling pot" reaction by-products are recyclable acetic acid, acetic anhydride and small amounts of EDA, the yield to vinyl acetate related products is 95%. [Pg.149]

It was found that a nickel-activated carbon catalyst was effective for vapor phase carbonylation of dimethyl ether and methyl acetate under pressurized conditions in the presence of an iodide promoter. Methyl acetate was formed from dimethyl ether with a yield of 34% and a selectivity of 80% at 250 C and 40 atm, while acetic anhydride was synthesized from methyl acetate with a yield of 12% and a selectivity of 64% at 250 C and 51 atm. In both reactions, high pressure and high CO partial pressure favored the formation of the desired product. In spite of the reaction occurring under water-free conditions, a fairly large amount of acetic acid was formed in the carbonylation of methyl acetate. The route of acetic acid formation is discussed. A molybdenum-activated carbon catalyst was found to catalyze the carbonylation of dimethyl ether and methyl acetate. [Pg.176]

Table IV shows the reactivities of raw materials and products on a nickel-activated carbon catalyst and the effect of hydrogen on the reactions. When carbon monoxide and hydrogen were introduced into the catalyst, no product was formed. Thus, the hydrogenation of CO does not proceed at all. When methyl iodide was added to the above-mentioned feed, 43% of the methyl iodide was converted to methane. In the presence of methyl iodide small amounts of methane, methanol, and acetic acid were formed from methyl acetate, while small amounts of methane and acetic acid were also formed from acetic anhydride. Hydrogen fed with methyl acetate accelerated the formation of methane and acetic acid remarkably. Table IV shows the reactivities of raw materials and products on a nickel-activated carbon catalyst and the effect of hydrogen on the reactions. When carbon monoxide and hydrogen were introduced into the catalyst, no product was formed. Thus, the hydrogenation of CO does not proceed at all. When methyl iodide was added to the above-mentioned feed, 43% of the methyl iodide was converted to methane. In the presence of methyl iodide small amounts of methane, methanol, and acetic acid were formed from methyl acetate, while small amounts of methane and acetic acid were also formed from acetic anhydride. Hydrogen fed with methyl acetate accelerated the formation of methane and acetic acid remarkably.
Rh > Ir > Ni > Pd > Co > Ru > Fe A plot of the relation between the catalytic activity and the affinity of the metals for halide ion resulted in a volcano shape. The rate determining step of the reaction was discussed on the basis of this affinity and the reaction order with respect to methyl iodide. Methanol was first carbonylated to methyl acetate directly or via dimethyl ether, then carbonylated again to acetic anhydride and finally quickly hydrolyzed to acetic acid. Overall kinetics were explored to simulate variable product profiles based on the reaction network mentioned above. Carbon monoxide was adsorbed weakly and associatively on nickel-activated-carbon catalysts. Carbon monoxide was adsorbed on nickel-y-alumina or nickel-silica gel catalysts more strongly and, in part, dissociatively,... [Pg.208]

Isomerization of methyl formate to acetic acid is a well-known reports in the patent literature date back to 1929. With a Co-iodide catalyst the reaction is carried out at 160° and 10.5 MPa CO . The selectivity to acetic acid is >95%. The best reported productivities are obtained with a Rh-Lil catalyst. In this case, the reaction is carried out at 180°C and 2.75 MPa with 99% conversion and near quantitative yield of acetic acid. The mechanism of the reaction involves initial cleavage of methyl formate by Lil. CH3I, obtained in the cleavage reaction, is carbonylated to acetyl iodide via the same catalytic chemistry observed in CH3OH carbonylation. The key to making acetic acid is that the mixed anhydride CHjCfOlOCfOlH is unstable and thermally decomposes to acetic acid and CO at the reaction conditions. [Pg.539]

It takes place in the liquid phase around 130 to 160 G and between 4 and 7.10 Pa absolute, in the presence of a catalyst complex based onpaHadium or rhodium, methyl iodide, and an amine or phosphine as initiator. Acetic anhydride ts formed as an intermediate. The convefston is directed toward the production of etfaytidene diacetate by increasing the proportionof CO in the synthesis gas. [Pg.150]

The catalyst components are generally dissolved in methyl acetate which acts as both reactant and solvent. Other solvents may be used and in fact, upon several batch recycles where lower boiling products are distilled off, the solvent is an ethylidene diacetate-acetic acid mixture. Any water introduced in the reaction mixture will be consumed via ester and anhydride hydrolysis, therefore anhydrous conditions are warranted. Typical batch reaction examples are presented in Table 1. There is generally sufficient reactivity when carbon monoxide and hydrogen are present at 200-500 psi. Similar results were obtained from the pilot plant using a continuous stirred tank reactor (CSTR). The reaction can also be run continuously over a supported catalyst with a feed of methyl acetate, methyl iodide, CO, and hydrogen. [Pg.139]


See other pages where Iodide catalyst acetic anhydride production is mentioned: [Pg.1814]    [Pg.225]    [Pg.338]    [Pg.351]    [Pg.566]    [Pg.142]    [Pg.896]    [Pg.208]    [Pg.383]    [Pg.10]    [Pg.256]    [Pg.256]    [Pg.1810]    [Pg.1814]    [Pg.410]    [Pg.178]    [Pg.1005]    [Pg.584]    [Pg.584]   
See also in sourсe #XX -- [ Pg.187 , Pg.188 ]




SEARCH



Acetals catalyst

Acetate production

Acetic anhydride, production catalyst

Catalyst productivity

Catalysts production

Iodide catalysts

© 2024 chempedia.info