Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex-based Catalysts

Sustainable Catalysis With Non-endangered Metals, Part 1 [Pg.373]

2 Iron-based Cross-coupling and C-H Activation Chemistiy [Pg.374]


Hanes RM (1987) Telomerization of conjugated alkadienes to organooxyalkadienes using palladium complex-based catalysts. US Patent 4,642,392... [Pg.96]

Sommer WJ, Jones CW, Week M (2007) Stability of supported pincer complex-based catalysts in Heck catalysis. In Morales-Morales D, Jensen CM (eds) The chemistry of pincer compounds. Elsevier, Amsterdam, p 385... [Pg.10]

The chemical complex includes the methanol plant, methyl acetate plant, and acetic anhydride plant. The methanol plant uses the Lurgi process for hydrogenation of CO over a copper-based catalyst. The plant is capable of producing 165,000 t/yr of methanol. The methyl acetate plant converts this methanol, purchased methanol, and recovered acetic acid from other Eastman processes into approximately 440,000 t/yr of methyl acetate. [Pg.167]

Benzene-Based Catalyst Technology. The catalyst used for the conversion of ben2ene to maleic anhydride consists of supported vanadium oxide [11099-11-9]. The support is an inert oxide such as kieselguhr, alumina [1344-28-17, or sUica, and is of low surface area (142). Supports with higher surface area adversely affect conversion of benzene to maleic anhydride. The conversion of benzene to maleic anhydride is a less complex oxidation than the conversion of butane, so higher catalyst selectivities are obtained. The vanadium oxide on the surface of the support is often modified with molybdenum oxides. There is approximately 70% vanadium oxide and 30% molybdenum oxide [11098-99-0] in the active phase for these fixed-bed catalysts (143). The molybdenum oxide is thought to form either a soUd solution or compound oxide with the vanadium oxide and result in a more active catalyst (142). [Pg.455]

The switch from the conventional cobalt complex catalyst to a new rhodium-based catalyst represents a technical advance for producing aldehydes by olefin hydroformylation with CO, ie, by the oxo process (qv) (82). A 200 t/yr CSTR pilot plant provided scale-up data for the first industrial,... [Pg.522]

Extensive efforts have been made to develop catalyst systems to control the stereochemistry, addition site, and other properties of the final polymers. Among the most prominant ones are transition metal-based catalysts including Ziegler or Ziegler-Natta type catalysts. The metals most frequentiy studied are Ti (203,204), Mo (205), Co (206-208), Cr (206-208), Ni (209,210), V (205), Nd (211-215), and other lanthanides (216). Of these, Ti, Co, and Ni complexes have been used commercially. It has long been recognized that by varying the catalyst compositions, the trans/cis ratio for 1,4-additions can be controlled quite selectively (204). Catalysts have also been developed to control the ratio of 1,4- to 1,2-additions within the polymers (203). [Pg.346]

Dehydrogenation, Ammoxidation, and Other Heterogeneous Catalysts. Cerium has minor uses in other commercial catalysts (41) where the element s role is probably related to Ce(III)/Ce(IV) chemistry. Styrene is made from ethylbenzene by an alkah-promoted iron oxide-based catalyst. The addition of a few percent of cerium oxide improves this catalyst s activity for styrene formation presumably because of a beneficial interaction between the Fe(II)/Fe(III) and Ce(III)/Ce(IV) redox couples. The ammoxidation of propjiene to produce acrylonitrile is carried out over catalyticaHy active complex molybdates. Cerium, a component of several patented compositions (42), functions as an oxygen and electron transfer through its redox couple. [Pg.371]

When a Br nsted base functions catalytically by sharing an electron pair with a proton, it is acting as a general base catalyst, but when it shares the electron with an atom other than the proton it is (by definition) acting as a nucleophile. This other atom (electrophilic site) is usually carbon, but in organic chemistry it might also be, for example, phosphorus or silicon, whereas in inorganic chemistry it could be the central metal ion in a coordination complex. Here we consider nucleophilic reactions at unsaturated carbon, primarily at carbonyl carbon. Nucleophilic reactions of carboxylic acid derivatives have been well studied. These acyl transfer reactions can be represented by... [Pg.349]

Quite a number of asymmetric thiol conjugate addition reactions are known [84], but previous examples of enantioselective thiol conjugate additions were based on the activation of thiol nucleophiles by use of chiral base catalysts such as amino alcohols [85], the lithium thiolate complex of amino bisether [86], and a lanthanide tris(binaphthoxide) [87]. No examples have been reported for the enantioselective thiol conjugate additions through the activation of acceptors by the aid of chiral Lewis acid catalysts. We therefore focussed on the potential of J ,J -DBFOX/ Ph aqua complex catalysts as highly tolerant chiral Lewis acid catalyst in thiol conjugate addition reactions. [Pg.285]

As shown above, it was not so easy to optimize the Michael addition reactions of l-crotonoyl-3,5-dimethylpyrazole in the presence of the l ,J -DBFOX/ Ph-Ni(C104)2 3H20 catalyst because a simple tendency of influence to enantio-selectivity is lacking. Therefore, we changed the acceptor to 3-crotonoyl-2-oxazolidi-none in the reactions of malononitrile in dichloromethane in the presence of the nickel(II) aqua complex (10 mol%) (Scheme 7.49). For the Michael additions using the oxazolidinone acceptor, dichloromethane was better solvent than THF and the enantioselectivities were rather independent upon the reaction temperatures and Lewis base catalysts. Chemical yields were also satisfactory. [Pg.293]

Ionic liquids have already been demonstrated to be effective membrane materials for gas separation when supported within a porous polymer support. However, supported ionic liquid membranes offer another versatile approach by which to perform two-phase catalysis. This technology combines some of the advantages of the ionic liquid as a catalyst solvent with the ruggedness of the ionic liquid-polymer gels. Transition metal complexes based on palladium or rhodium have been incorporated into gas-permeable polymer gels composed of [BMIM][PFg] and poly(vinyli-dene fluoride)-hexafluoropropylene copolymer and have been used to investigate the hydrogenation of propene [21]. [Pg.266]

The most common catalysts for ATRP are complexes based on a copper(T) halide and nitrogen based ligand(s). Various ligands have been employed and those most frequently encountered are summarized in Table 9.5. Typically, four nitrogens coordinate to copper. The bidentate bipyridyl (bpy) ligands 132-133 are known to form a 2 1 complex. The tetradentate ligands are expected to form a 1 1 complex. [Pg.493]

In contrast to the situation with copper-based catalysis, most studies on ruthenium-based catalysts have made use of preformed metal complexes. The first reports of ruthenium-mediated polymerization by Sawamoto and coworkers appeared in I995.26 In the early work, the square pyramidal ruthenium (II) halide 146 was used in combination with a cocatalyst (usually aluminum isopropoxide). [Pg.495]


See other pages where Complex-based Catalysts is mentioned: [Pg.373]    [Pg.377]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.387]    [Pg.389]    [Pg.391]    [Pg.395]    [Pg.399]    [Pg.401]    [Pg.403]    [Pg.405]    [Pg.38]    [Pg.470]    [Pg.161]    [Pg.168]    [Pg.373]    [Pg.377]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.387]    [Pg.389]    [Pg.391]    [Pg.395]    [Pg.399]    [Pg.401]    [Pg.403]    [Pg.405]    [Pg.38]    [Pg.470]    [Pg.161]    [Pg.168]    [Pg.2783]    [Pg.162]    [Pg.366]    [Pg.467]    [Pg.454]    [Pg.58]    [Pg.195]    [Pg.832]    [Pg.223]    [Pg.22]    [Pg.258]    [Pg.172]    [Pg.202]    [Pg.488]    [Pg.121]   


SEARCH



Catalysts complex, polymer-based

Conductive polymer-based complex catalysts

II) Schiff-base complexes as catalysts

Iron complex-based catalysts

Iron complex-based catalysts activation chemistry

Rhodium complexes, catalysts based

Vanadium complexes tungsten-based catalysts

© 2024 chempedia.info