Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Investigating interfacial tension

Compatibility and various other properties such as morphology, crystalline behavior, structure, mechanical properties of natural rubber-polyethylene blends were investigated by Qin et al. [39]. Polyethylene-b-polyiso-prene acts as a successful compatibilizer here. Mechanical properties of the blends were improved upon the addition of the block copolymer (Table 12). The copolymer locates at the interface, and, thus, reduces the interfacial tension that is reflected in the mechanical properties. As the amount of graft copolymer increases, tensile strength and elongation at break increase and reach a leveling off. [Pg.644]

The dependence of the interfacial tension at the W/NB interface on the interfacial potential difference [29,30] was investigated by using an aqueous solution dropping electrode [26,31]. In this investigation, the aqueous solution was forced upward dropwise in NB and the drop time of W was measured as a function of potential difference applied at the W/ NB interface. When W contained 1 MMgS04 and NB contained 4 x 10 " M Cs" TPhB ... [Pg.613]

Figure 4c shows that the amount of adsorbed proteins is rapidly saturated within several minutes of exposing serum-containing medium to a surface. Albumin, the most abundant serum protein, was expected to preferentially adsorb onto the surfaces during early time points. Then, adsorbed albumin was expected to be displaced by cell adhesion proteins. To investigate the effect of preadsorbed albumin displacement on cell adhesion, SAMs were first exposed to albumin then, HUVECs suspended in a serum-supplemented medium were added [21, 42]. Very few cells adhered to hydrophobic SAMs that had been pretreated with albumin, due to the large interfacial tension between water and the hydrophobic surfactant-like surface. Albumin was infrequently displaced by the cell adhesive proteins Fn and Vn. One the other hand, HUVECs adhered well to hydrophilic SAM surfaces that had been preadsorbed with albumin. In that case, the preadsorbed albumin was readily displaced by cell adhesive proteins. [Pg.177]

Basic Breakup Modes. Starting from Lenard s investigation of large free-falling drops in still air,12671 drop/droplet breakup has been a subject of extensive theoretical and experimental studies[268] 12851 for a century. Various experimental methods have been developed and used to study droplet breakup, including free fall in towers and stairwells, suspension in vertical wind tunnels keeping droplets stationary, and in shock tubes with supersonic velocities, etc. These theoretical and experimental studies revealed that droplet breakup under the action of aerodynamic forces may occur in various modes, depending on the flow pattern around the droplet, and the physical properties of the gas and liquid involved, i.e., density, viscosity, and interfacial tension. [Pg.171]

The influence of dispersed-phase viscosity was found to be negligible by Hayworth and Treybal (H5), but found to be significant (K2) when a greater range of dispered-phase viscosity was investigated. From the graph of Hayworth and Treybal, the influence of interfacial tension appears, as in the case of bubbles, to be more at low flow rates than at high flow rates. [Pg.335]

The low interfacial tensions between two liquids have been measured for different systems by using the pendant drop method. In the case of the quaternary system Ci2ll25S 3 tNa+H20+n-Butanol+Toluene, the interfacial data as measured by pendant drop method are compared with reported literature data, using other methods (with varying NaCl concentration). In order to understand the role of co-surfactant, ternary systems were also investigated. The pendant drop method was also used for measuring the interfacial tension between surfactant-H20/n-alcohol (with number of carbon atoms in alcohol varying from 4-10). The interfacial tension variation was dependent on both the surfactant and alcohol. [Pg.329]

Meyer s results also resemble those of Schmidt in the peculiarity that the rapid fall in the value of the surface tension does not begin at the very lowest concentrations of solute. The first addition of alkali metal indeed produces little effect on the interfacial tension, and there is a point of inflexion on the concentration surface tension at its steepest part. This behaviour appears to be characteristic of amalgams the explanation is not clear and the phenomenon deserves further investigation. [Pg.108]

The factors determining the appearance of ordered cell-like motions were first investigated by Sternling and Scriven (S33) who considered the two-dimensional stability of a plane interface separating two immiscible semi-infinite fluid phases with mass transfer occurring between the phases. This system was shown to be unstable for mass transfer in one direction, but stable for transfer in the opposite direction. For an interfacial tension-lowering solute, instability... [Pg.246]

During the past few years, the determination of the interfacial properties of binary mixtures of surfactants has been an area in which there has been considerable activity on the part of a number of investigators, both in industry and in academia. The Interest in this area stems from the fact that mixtures of two different types of surfactants often have interfacial properties that are better than those of the individual surfactants by themselves. For example, mixtures of two different surface-active components sometimes reduce the interfacial tension at the hydrocarbon/water interface to values far lower than that obtained with the individual surfactants, and certain mixtures of surfactants are better foaming agents than the individual components. For the purpose of this discussion we define synergism as existing in a system when a given property of the mixture can reach a more desirable value than that attainable by either surface-active component of the mixture by itself. [Pg.144]

Another interpretation of the electrocapillary curve is easily obtained from Equation (89). We wish to investigate the effect of changes in the concentration of the aqueous phase on the interfacial tension at constant applied potential. Several assumptions are made at this point to simplify the desired result. More comprehensive treatments of this subject may be consulted for additional details (e.g., Overbeek 1952). We assume that (a) the aqueous phase contains only 1 1 electrolyte, (b) the solution is sufficiently dilute to neglect activity coefficients, (c) the composition of the metallic phase (and therefore jt,Hg) is constant, (d) only the potential drop at the mercury-solution interface is affected by the composition of the solution, and (e) the Gibbs dividing surface can be located in such a way as to make the surface excess equal to zero for all uncharged components (T, = 0). With these assumptions, Equation (89) becomes... [Pg.347]

Eadie, in Ref 69, reports on a considerable amount of work done on the ability of beeswax and paraffin wax to remain coated on HMX surfaces when immersed in liq TNT. Thru measurements of contact angles, a technique used earlier on RDX/wax systems reported on by Rubin in Ref 23, it was determined that the TNT preferentially wets the HMX and the wax is stripped away. He concludes that the most important property of a desensitizing wax is that it should be readily dispersed uniformly thruout the TNT phase. He also suggests that a better desensitizer for investigation for use would be a wax or substituted hydrocarbon having a low interfacial tension with TNT. The smaller the wax droplet size the more efficiently it will be distributed and the more effectively it should desensitize. Williamson (Ref 64) in his examination of the microstructures of PETN/TNT/wax fusion-casts detected that wax is dispersed thru the cast as isolated descrete globules which he refers to as blebs or irregular or streak-like areas, surrounded by TNT (see also Ref 54)... [Pg.331]


See other pages where Investigating interfacial tension is mentioned: [Pg.174]    [Pg.232]    [Pg.174]    [Pg.232]    [Pg.31]    [Pg.2363]    [Pg.2363]    [Pg.2377]    [Pg.432]    [Pg.591]    [Pg.668]    [Pg.181]    [Pg.182]    [Pg.147]    [Pg.180]    [Pg.300]    [Pg.241]    [Pg.336]    [Pg.301]    [Pg.116]    [Pg.342]    [Pg.29]    [Pg.31]    [Pg.220]    [Pg.21]    [Pg.263]    [Pg.335]    [Pg.1658]    [Pg.230]    [Pg.333]    [Pg.16]    [Pg.26]    [Pg.190]    [Pg.78]    [Pg.6]    [Pg.18]    [Pg.106]    [Pg.461]    [Pg.181]    [Pg.344]    [Pg.132]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Interfacial tension

© 2024 chempedia.info