Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intrinsic description

Another difficulty in attempting to give a definition of life is that in fact the term definition is too ambitious, too frightening. Probably the term description would be more acceptable. In the language of epistemology, there is the distinction between an intrinsic description, meaning a context-independent description based on first principles and an operational description. As Primas says in a different context (Primas, 1998) ... [Pg.17]

Trivial name—A coined name in general use. It is a common name by which the drug is identified although it may not be intrinsically descriptive. There may be more than one trivial name (e.g., acetylsalicylic acid). [Pg.18]

On short length scales the coarse-grained description breaks down, because the fluctuations which build up the (smooth) intrinsic profile and the fluctuations of the local interface position are strongly coupled and camiot be distinguished. The effective interface Flamiltonian can describe the properties only on length scales large compared with the width w of the intrinsic profile. The absolute value of the cut-off is difficult... [Pg.2373]

Table 2. Predicted intrinsic and apparent pKa values for the Cys403 residue in Yersinia phosphatase for different models of the structure the data refer to a temperature of 293 K and an ionic strength corresponding to 150 mM of monovalent salt. See the text for the detailed description of the conditions under which each pK estimation was made. The experimentally determined value is 4.67 [39]... Table 2. Predicted intrinsic and apparent pKa values for the Cys403 residue in Yersinia phosphatase for different models of the structure the data refer to a temperature of 293 K and an ionic strength corresponding to 150 mM of monovalent salt. See the text for the detailed description of the conditions under which each pK estimation was made. The experimentally determined value is 4.67 [39]...
The most common description of relativistic quantum mechanics for Fermion systems, such as molecules, is the Dirac equation. The Dirac equation is a one-electron equation. In formulating this equation, the terms that arise are intrinsic electron spin, mass defect, spin couplings, and the Darwin term. The Darwin term can be viewed as the effect of an electron making a high-frequency oscillation around its mean position. [Pg.262]

The quaHty, ie, level of impurities, of the fats and oils used in the manufacture of soap is important in the production of commercial products. Fats and oils are isolated from various animal and vegetable sources and contain different intrinsic impurities. These impurities may include hydrolysis products of the triglyceride, eg, fatty acid and mono/diglycerides proteinaceous materials and particulate dirt, eg, bone meal and various vitamins, pigments, phosphatides, and sterols, ie, cholesterol and tocopherol as weU as less descript odor and color bodies. These impurities affect the physical properties such as odor and color of the fats and oils and can cause additional degradation of the fats and oils upon storage. For commercial soaps, it is desirable to keep these impurities at the absolute minimum for both storage stabiHty and finished product quaHty considerations. [Pg.150]

General description. Incomplete penetration describes the condition in which the weld fails to reach the bottom of the weld joint, resulting in a notch located at the root of the weld (Fig. 15.12). This critical defect can substantially reduce the intrinsic mechanical strength of the joint and can combine with environmental factors to produce corrosion fatigue (Chap. 10), stress-corrosion cracking (Chap. 9), or crevice corrosion (Chap. 2). [Pg.335]

In the previous chapter, a comprehensive description was provided, from four complementary perspectives, of the process of how human errors arise during the tasks typically carried out in the chemical process industry (CPI). In other words, the primary concern was with the process of error causation. In this chapter the emphasis will be on the why of error causation. In terms of the system-induced error model presented in Chapter 1, errors can be seen as arising from the conjunction of an error inducing environment, the intrinsic error tendencies of the human and some initiating event which triggers the error sequence from this imstable situation (see Figure 1.5, Chapter 1). This error sequence may then go on to lead to an accident if no barrier or recovery process intervenes. Chapter 2 describes in detail the characteristics of the basic human error tendencies. Chapter 3 describes factors which combine with these tendencies to create the error-likely situation. These factors are called performance-influencing factors or PIFs. [Pg.102]

Although intrinsic reaction coordinates like minima, maxima, and saddle points comprise geometrical or mathematical features of energy surfaces, considerable care must be exercised not to attribute chemical or physical significance to them. Real molecules have more than infinitesimal kinetic energy, and will not follow the intrinsic reaction path. Nevertheless, the intrinsic reaction coordinate provides a convenient description of the progress of a reaction, and also plays a central role in the calculation of reaction rates by variational state theory and reaction path Hamiltonians. [Pg.181]

Classical descriptions of molecular phenomena can be remarkably successful, but we have to keep our eye on the intrinsic quantum nature of microscopic systems. [Pg.72]

Frieden s theory is that any physical measurement induces a transformation of Fisher information J I connecting the phenomenon being measured to intrinsic data. What we call physics - i.e. our objective description of phenomenologically observed behavior - thus derives from the Extreme Physical Information (EPI) principle, which is a variational principle. EPI asserts that, if we define K = I — J as the net physical information, K is an extremum. If one accepts this EPI principle as the foundation, the status of a Lagrangian is immediately elevated from that of a largely ad-hoc construction that yields a desired differential equation to a measure of physical information density that has a definite prior significance. [Pg.647]

Statistics in general is a discipline dealing with ideas on description of data, implications of data (relation to general pharmacological models), and questions such as what effects are real and what effects are different Biological systems are variable. Moreover, often they are living. What this means is that they are collections of biochemical reactions going on in synchrony. Such systems will have an intrinsic variation in their output due to the variances in the... [Pg.225]

The proposed scenario is mainly based on the molecular approach, which considers conjugated polymer films as an ensemble of short (molecular) segments. The main point in the model is that the nature of the electronic state is molecular, i.e. described by localized wavefunctions and discrete energy levels. In spite of the success of this model, in which disorder plays a fundamental role, the description of the basic intrachain properties remains unsatisfactory. The nature of the lowest excited state in m-LPPP is still elusive. Extrinsic dissociation mechanisms (such as charge transfer at accepting impurities) are not clearly distinguished from intrinsic ones, and the question of intrachain versus interchain charge separation is not yet answered. [Pg.456]

In the last two decades experimental evidence has been gathered showing that the intrinsic properties of the electrolytes determine both bulk properties of the solution and the reactivity of the solutes at the electrodes. Examples covering various aspects of this field are given in Ref. [16]. Intrinsic properties may be described with the help of local structures caused by ion-ion, ion-solvent, and solvent-solvent interactions. An efficient description of the properties of electrolyte solutions up to salt concentrations significantly larger than 1 mol kg 1 is based on the chemical model of electrolytes. [Pg.465]

However, dendrimeric and hyperbranched polyesters are more soluble than the linear ones (respectively 1.05, 0.70, and 0.02 g/mL in acetone). The solution behavior has been investigated, and in the case of aromatic hyperbranched polyesters,84 a very low a-value of the Mark-Houvink-Sakurada equation 0/ = KMa) and low intrinsic viscosity were observed. Frechet presented a description of the intrinsic viscosity as a function of the molar mass85 for different architectures The hyperbranched macromolecules show a nonlinear variation for low molecular weight and a bell-shaped curve is observed in the case of dendrimers (Fig. 5.18). [Pg.286]

Antonietti M., Briel A., Fosrster S. Quantitative Description of the Intrinsic Viscosity of Branched. Polyelectrolytes. Macromolecules 1997, 30, 2700-2704. [Pg.111]

The description of molecules such as water in a CA experiment is a blend of rules that are relational rather than intrinsic. The rules describe how a molecule... [Pg.46]

Two pathways lead to fibrin clot formation the intrinsic and the extrinsic pathways. These pathways are not independent, as previously thought. However, this artificial distinction is retained in the following text to fa-cihtate their description. [Pg.598]

The description of the properties of this region is based on the solution of the Poisson equation (Eqs 4.3.2 and 4.3.3). For an intrinsic semiconductor where the only charge carriers are electrons and holes present in the conductivity or valence band, respectively, the result is given directly by Eq. (4.3.11) with the electrolyte concentration c replaced by the ratio n°/NA, where n is the concentration of electrons in 1 cm3 of the semiconductor in a region without an electric field (in solid-state physics, concentrations are expressed in terms of the number of particles per unit volume). [Pg.247]

The concepts of intrinsic activity and efficacy just outlined are purely descriptive, without reference to mechanism. We turn now to how differences in efficacy might be explained in terms of the molecular events that underlie receptor activation, and we begin by considering some of the experimental evidence that has provided remarkably direct evidence of the nature of these events. [Pg.26]


See other pages where Intrinsic description is mentioned: [Pg.28]    [Pg.15]    [Pg.397]    [Pg.28]    [Pg.15]    [Pg.397]    [Pg.24]    [Pg.74]    [Pg.842]    [Pg.2373]    [Pg.645]    [Pg.314]    [Pg.853]    [Pg.327]    [Pg.390]    [Pg.283]    [Pg.387]    [Pg.42]    [Pg.484]    [Pg.60]    [Pg.380]    [Pg.207]    [Pg.179]    [Pg.585]    [Pg.204]    [Pg.307]    [Pg.2]    [Pg.293]    [Pg.282]    [Pg.324]    [Pg.76]    [Pg.182]    [Pg.257]    [Pg.24]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Intrinsic stress, description

© 2024 chempedia.info