Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intramuscular administration injection site

Iron salts occasionally cause gastrointestinal irritation, nausea, vomiting, constipation, diarrhea, headache, backache, and allergic reactions. The stools usually appear darker (black). Iron dextran is given by the parenteral route Hypersensitivity reactions, including fatal anaphylactic reactions, have been reported with the use of this form of iron. Additional adverse reactions include soreness, inflammation, and sterile abscesses at the intramuscular (IM) injection site Intravenous (IV) administration may result in phlebitis at the injection site When iron is administered via the IM route, a brownish discoloration of tlie skin may occur. Fhtients with rheumatoid arthritis may experience an acute exacerbation of joint pain, and swelling may occur when iron dextran is administered. [Pg.434]

Other adverse reactions associated with penicillin are hematopoietic changes such as anemia, thrombocytopenia (low platelet count), leukopenia (low white blood cell count), and bone marrow depression. When penicillin is given orally, glossitis (inflammation of the tongue), stomatitis (inflammation of die mouth), dry mouth, gastritis, nausea, vomiting, and abdominal pain occur. When penicillin is given intramuscularly (IM), there may be pain at die injection site Irritation of the vein and phlebitis (inflammation of a vein) may occur witii intravenous (IV) administration. [Pg.70]

Other adverse reactions that may be seen with administration of the cephalosporins are headache, dizziness, nephrotoxicity (damage to the kidneys by a toxic substance), malaise, heartburn, and fever. Intramuscular (IM) administration often results in pain, tenderness, and inflammation at the injection site Intravenous (IV) administration has resulted in thrombophlebitis and phlebitis. [Pg.77]

PARENTERAL ADMINISTRATION. When these drag > are given intramuscularly, the nurse inspects previous injection sites for signs of pain or tenderness, redness, and swelling. Some antibiotics may cause temporary local reactions, but persistence of a localized reaction should be reported to the primary health care provider. It is important to rotate injection sites and record the site used for injection in the patient s chart. [Pg.88]

Opioids maybe administered in a variety of routes including oral (tablet and liquid), sublingual, rectal, transdermal, transmucosal, intravenous, subcutaneous, and intraspinal. While the oral and transdermal routes are most common, the method of administration is based on patient needs (severity of pain) and characteristics (swallowing difficulty and preference). Oral opioids have an onset of effect of 45 minutes, so intravenous or subcutaneous administration maybe preferred if more rapid relief is desired. Intramuscular injections are not recommended because of pain at the injection site and wide fluctuations in drug absorption and peak plasma concentrations achieved. More invasive routes of administration such as PCA and intraspinal (epidural and intrathecal) are primarily used postoperatively, but may also be used in refractory chronic pain situations. PCA delivers a self-administered dose via an infusion pump with a preprogrammed dose, minimum dosing interval, and maximum hourly dose. Morphine, fentanyl, and hydromorphone are commonly administered via PCA pumps by the intravenous route, but less frequently by the subcutaneous or epidural route. [Pg.497]

Liposomes tend to remain at the injection site when they are administered intramuscularly or subcutaneously. Therefore, these administration routes are useful for slow and sustained release of drugs at the injection site. [Pg.35]

Toxicology. DBA produced carcinomas in animals after oral or dermal exposure and injection site tumors after subcutaneous or intramuscular administration. [Pg.210]

Intramuscular and subcutaneous injections are by far the most common means of parenteral drug administration. Because of the high tissue blood flow and the ability of the injected solution to diffuse laterally, drug absorption generally is more rapid after intramuscular than after subcutaneous injection. Drug absorption from intramuscular and subcutaneous sites depends on the quantity and composition of the connective tissue, the capillary density, and the rate of vascular perfusion of the area. These factors can be influenced by the coinjection of agents that alter local blood flow (e.g., vasoconstrictors or vasodilators) or by substances that decrease tissue resistance to lateral diffusion (e.g., hyaluronidase). [Pg.28]

The xanthines are readily absorbed by the oral and rectal routes. Although these agents can be administered by injection (aminophylline is a soluble salt of theophylline), intravascular administration is indicated only in status asthmaticus and apnea in premature infants. Intramuscular injection generally produces considerable pain at the injection site. [Pg.351]

Glucocorticoids are available in a wide range of preparations, so that they can be administered parenterally, orally, topically, or by inhalation. Obviously the oral route is preferred for prolonged therapy. However, parenteral administration is required in certain circumstances. Intramuscular injection of a water-soluble ester (phosphate or succinate) formed by esterification of the C21 steroid alcohol produces peak plasma steroid levels within 1 hour. Such preparations are useful in emergencies. By contrast, acetate and tertiary butylacetate esters must be injected locally as suspensions and are slowly absorbed from the injection site, which prolongs their effectiveness to approximately 8 hours. [Pg.692]

After oral administration peak plasma concentration of phenytoin usually takes 2 to 4 hours with a second peak at 10 to 12 hours. When administered intramuscularly, pheny-toin is eventually absorbed completely, the drug first crystallises out at the injection site and then slowly redissolves in tissue fluids before entering into the circulation. As a result absorption of phenytoin by IM route is too slow to produce a reliable effect. In contrast a phosphate prodrug, fosphenytoin, is more soluble and is well absorbed after IM administration. [Pg.107]

The minor adverse effects include nausea, vomiting, pain and inflammation at the site of injection after intramuscular administration has been reported. After intrathecal administration (which is a contraindication) it may lead to convulsions, arachnoiditis and encephalopathy. [Pg.318]

After an intramuscular dose of Avonex, serum levels of interferon beta-la peak between 3 and 15 hours and then decline at a rate consistent with a 10-hour elimination half-life. The terminal half-life of interferon beta-la after intravenous administration has been estimated at between 3 and 4 hours. Serum levels of interferon beta-la may be sustained after intramuscular administration due to prolonged absorption from the injection site. Systemic exposure, as determined by area under... [Pg.195]

Pentamidine is a highly toxic drug, with adverse effects noted in about 50% of patients receiving 4 mg/kg/d. Rapid intravenous administration can lead to severe hypotension, tachycardia, dizziness, and dyspnea, so the drug should be administered slowly (over 2 hours), and patients should be recumbent and monitored closely during treatment. With intramuscular administration, pain at the injection site is common, and sterile abscesses may develop. [Pg.1138]

Residues in tissues are, generally, much higher with parenteral than oral administration. Residues in calves given intramuscularly 20 mg apramycin /kg bw /day for 5 days declined from 296,600-435,300 ppb in kidney, 8700-14,700 ppb in liver, 6200 ppb in fat, 1900-3400 in muscle, and 23,600-65,100 at the injection site at 4 h after the last tteatment to 1200-14,500 ppb in kidney, 3500-4200 ppb in liver, 400 ppb in fat, below 268 ppb in muscle, and less than 268-4600 ppb at the injection site at 28 days after treatment. [Pg.29]

The rates of absorption, clearance, and elimination of penicillin G are further influenced by the route of administration. Intramuscular and subcutaneous injections provide drug to the bloodstream more slowly, but maintain concentrations longer than the intravenous administration. Absorption of penicillin G from intramuscular or subcutaneous sites can be further slowed down by the use of the relatively insoluble procaine salt. When equivalent dosages of penicillin G and procaine penicillin G were injected parenterally, peak residues concentration in blood occurred after 2 h and the drug had cleared the blood by 8 following penicillin G administration. With the procaine penicillin G, peak residues concentration appeared 5 h after injection and the drug cleared the plasma 24 h after administration (57). [Pg.45]

Residue depletion studies in pigs after intramuscular administration of ceftiofur showed total residue concentrations of 590, 1190, 250, 400, and 1320 ppb in liver, kidney, muscle, skin/fat, and injection site, respectively, at 12 h after dosing. In cattle, intramuscular administration of radiolabeled ceftiofur resulted in total residue concentrations of 1294, 250, 60, and 60 ppb equivalents in liver 3508, 853, 159, and 159 ppb equivalents in kidney 208, 20, 10, and 10 ppb... [Pg.57]

Absorption of orally administered cefquinome is poor, but absorption following intramuscular or subcutaneous administration proceeds relatively quickly. A small fraction of the intramammarily administered cefquinome is absorbed systemically. Distribution of cefquinome is not extensive following parenteral administration of radiolabeled cefquinome the highest activities were found in injection-site tissues, kidney, and liver. Excretion of parenterally administered cefquinome is predominantly renal, while intramammarily administered cefquinome is excreted mainly in milk. Cefquinome is metabolically quite stable. [Pg.58]

After subcutaneous or intramuscular injection of netobimin into cattle, absorption was rapid but plasma levels of radioactivity were lower than those achieved following oral administration. This indicates that absorption occurred prior to the conversion to albendazole since high levels of parent drug were found in plasma and milk soon after the injection. On the other hand, at 12 h after the injection the parent drug could not be detected at the injection site or in liver. [Pg.127]

Intravenous administration followed by intramuscular administration 24 h later of radiolabeled tolfenamic acid in dairy cattle at a dosage of 4 mg/kg bw or two intramuscular administrations of 2 mg/kg bw showed tliat at 8 days after the cessation of treatment, the concentrations of residues in liver, kidney, and injection site were 0.07, 0.09, and 39.6 ppm tolfenamic acid equivalent. The proportion of the parent drug relative to total residues was 51% in liver, 56.7% in kidney, and 78% at the injection site. Residues of tolfenamic acid could not be detected in milk at 24-h, following intravenous and intramuscular administrations. [Pg.236]

Because of its relatively short excretion time, xylazine produces residue concentrations below 0.1 ppm in all edible tissues of sheep and cows except the injection site, liver, and kidney, at 20 h after intramuscular administration (115). In addition, xylazine is not excreted with cow milk. Hence, only 2 days are recommended in Norway between treatment and slaughter of cattle or the delivery of milk for human consumption. However, liver and kidney should be discarded if slaughter has taken place less than 4 days after medication. [Pg.242]


See other pages where Intramuscular administration injection site is mentioned: [Pg.22]    [Pg.125]    [Pg.363]    [Pg.596]    [Pg.305]    [Pg.112]    [Pg.132]    [Pg.389]    [Pg.672]    [Pg.208]    [Pg.456]    [Pg.647]    [Pg.1086]    [Pg.311]    [Pg.961]    [Pg.772]    [Pg.148]    [Pg.456]    [Pg.647]    [Pg.1086]    [Pg.121]    [Pg.101]    [Pg.224]    [Pg.228]    [Pg.760]    [Pg.6]    [Pg.175]    [Pg.260]   
See also in sourсe #XX -- [ Pg.351 ]




SEARCH



Injection administration

Intramuscular administration

Intramuscular injection sites

Intramuscularly

© 2024 chempedia.info