Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intramolecular hydroaminations

The guanidinate-supported titanium imido complex [Me2NC(NPr02l2Ti = NAr (Ar = 2,6-Me2C6H3) (cf. Section IILB.2) was reported to be an effective catalyst for the hydroamination of alkynes. The catalytic activity of bulky amidinato bis(alkyl) complexes of scandium and yttrium (cf. Section III.B.l) in the intramolecular hydroamination/cyclization of 2,2-dimethyl-4-pentenylamine has been investigated and compared to the activity of the corresponding cationic mono(alkyl) derivatives. [Pg.336]

The Rh and Ir complexes 85-88 (Fig. 2.14) have been tested for the intramolecular hydroamination/cyclisation of 4-pentyn-l-amine to 2-methyl-1-pyrroline (n = 1). The reactions were carried out at 60°C (1-1.5 mol%) in THF or CDCI3 The analogous rhodium systems were more active. Furthermore, the activity of 87 is higher than 85 under the same conditions, which was attributed to the hemilabihty of the P donor in the former complex, or to differences in the trans-eSects of the phosphine and NHC ligands, which may increase the lability of the coordinated CO in the pre-catalyst [75,76]. [Pg.42]

Fig. 2.14 Rhodium and iridium cataiysts for the intramolecular hydroamination of alkynes... Fig. 2.14 Rhodium and iridium cataiysts for the intramolecular hydroamination of alkynes...
The pincer complexes 89-90 (Fig. 2.14) catalyse the intramolecular hydroamination/ cyclisation of unactivated alkenes, yielding pyrrolidines and piperidines (n = 1,2, respectively). The reactions can be carried out in benzene or water with high... [Pg.42]

Finally, intramolecular hydroamination/cyclisation of M-alkenyl ureas was catalysed by the well-defined [AuCl(IPr)] complex (Schane 2.16), in the presence of AgOTf (5 mol%, rt, methanol, 22 h). The cationic Au(lPr)+ is presumably the active species [83]. [Pg.44]

Scheme 2.16 Gold-catalysed intramolecular hydroamination of alkenes... Scheme 2.16 Gold-catalysed intramolecular hydroamination of alkenes...
Although efficient for the intramolecular hydroamination/cyclization (abbreviated IH below) of aminoalkenes (see below), organolanthanides exhibit a much lower catalytic activity for the intermolecular hydroamination of aUcenes, as exemplified by the reaction of n-PrNH2 with 1-pentene catalyzed by a neodymium complex (Eq. 4.17) [127]. [Pg.100]

The above catalyst and Me2Si(C5Me4)2NdCH(SiMe3)2 are also efScient for the intramolecular hydroamination/bicyclization of aminoalkenynes, as exemplified in Eq. (4.26) [137, 138]. [Pg.104]

Due to its marked atom economy, the intramolecular hydroamination of alkenes represents an attractive process for the catalytic synthesis of nitrogen-containing organic compounds. Moreover, the nitrogen heterocycles obtained by hydroamination/cyclisation processes are frequently found in numerous pharmacologically active products. The pioneering work in this area was reported by Marks et al. who have used lanthanocenes to perform hydroamination/cyclisation reactions in 1992. These reactions can be performed in an intermolecular fashion and transition metals are by far the more efficient catalysts for promotion of these transformations via activation of the... [Pg.356]

The synthesis of a series of chiral organophosphine oxide/sulfide-substituted binaphtholate ligands has recently been reported by Marks and Yu and their corresponding lanthanide complexes characterized. These complexes, generated in situ from Ln[N(TMS)2]3, cleanly catalysed enantioselective intramolecular hydroamination/cyclisation of 1-amino-2,2-dimethyl-4-pentene albeit with a low enantioselectivity of 7% ee (Scheme 10.82). [Pg.358]

The cationic imidazolium rhodium complex (56) has been found to catalyze the intramolecular hydroamination of alkynes in refluxing THF. In the case of 2-ethynylaniline, indole is formed in 100% yield over 9h at 55 °C (Scheme 38).173 One of the earliest examples of late transition metal-catalyzed hydroamination involved the use of the iridium(I) complex [Ir(PEt3)2(C2H4)Cl] as... [Pg.292]

Hydroamination of olefins has received considerable attention this year as a route to functionalized piperidines and spiropiperidines, particularly in regard to the investigation of new catalysts. In the synthesis of spiro-piperidines, two new mild and more general intramolecular hydroamination protocols were developed this year. One protocol uses a cationic gold-phosphine complex (Au[P(fBu)2(o-biphenyl)]Cl) as the catalyst... [Pg.335]

Chang et al. reported a mild tandem intramolecular hydroamination of yne amines to form an endo-adduct intermediate, which reacts with electron-deficient azides to produce cyclic amidines <06JA12366>. Selected examples of an interesting synthetic route to tropene derivatives 165 via a dual hydroamination strategy is shown below. This one-step reaction makes use of a palladium catalyst and takes place by sequential intermolecular hydroamination of cycloheptatriene with aryl, heteroaryl, and primary alkyl amines to generate intermediate 166, followed by transannular intramolecular hydroamination <06JA8134>. [Pg.336]

Ackermann and Bergman developed a highly reactive titanium precatalyst for the intramolecular hydroamination of allenes 149 [101]. The products 150 and in one... [Pg.901]

The intramolecular hydroamination of substrates 170 is catalyzed by a Pd(0) catalyst which is generated in situ from a Pd(II) precursor and a phosphane. One equivalent of acetic acid has to be added for efficient catalysis this is a hint of a hydropallada-tion mechanism. Meguro and Yamamoto obtained good yields of the vinyltetrahy-dropyrroles or the vinylhexahydropyridines 171 in that way (Scheme 15.53) [109]. [Pg.904]

Highly regioselective intramolecular hydroamination of a y-aminoallenes has been achieved using a titanium bis (sulfonamide) as a precatalyst (Scheme 16.102) [107]. [Pg.969]

It should be recognized that already Togni and co-workers had observed a similar base effect in the context of the intramolecular hydroamination of 2-... [Pg.150]

In 2008, the Ackennann group reported on the use of phosphoric acid 3r (10 mol%, R = SiPhj) as a Brpnsted acid catalyst in the unprecedented intramolecular hydroaminations of unfunctionaUzed alkenes alike 144 (Scheme 58) [82], BINOL-derived phosphoric acids with bulky substituents at the 3,3 -positions showed improved catalytic activity compared to less sterically hindered representatives. Remarkably, this is the first example of the activation of simple alkenes by a Brpnsted acid. However, the reaction is limited to geminally disubstituted precursors 144. Their cyclization might be favored due to a Thorpe-Ingold effect. An asymmetric version was attempted by means of chiral BINOL phosphate (R)-3( (20 mol%, R = 3,5-(CF3)2-CgH3), albeit with low enantioselectivity (17% ee). [Pg.441]

Initial studies by Yamamoto et al. developed a highly efficient gold-catalyzed intramolecular hydroamination of allenes under very mild conditions [42]. [Pg.436]

Another application in the construction of biological components was the formation of a hexacyclic substructure of Communesin by Crawley and Funk, via intramolecular hydroamination [118]. [Pg.460]

Access to more simply substituted azepine derivatives 116 and 117 has also been realized by ruthenium-catalyzed intramolecular hydroamination of the aminoalkyne 115 (Equation 16) <2001JOM(622)149>. The isolated yield of 116 was 21% and of 117 was only 13%. [Pg.12]

Intramolecular hydroamination of cyclohexa-2,5-dienes has afforded the corresponding bicyclic allylic amines with high selectivity (Scheme 13).80 The reaction does not proceed through a direct hydroamination of one of the diastereotopic alkenes but more likely involves a diastereoselective protonation of a pentadienyl anion, followed by addition of a lithium amide across the double bond of the resulting 1,3-diene and a highly regioselective protonation of the final allylic anion. [Pg.291]

Several neutral titanium complexes have been shown to catalyse intramolecular hydroamination reactions of alkenes. The corresponding pyrrolidine and piperidine products were formed in up to 97% yields. However, only the geminally disubstituted aminoalkenes were successfully cyclized (Thorpe-Ingold effect).56... [Pg.327]

Iron salts (e.g. FeCls) have been identified as new catalysts for intramolecular hydroamination. A number of olefinic tosylamides underwent the reaction at 80 °C to form the corresponding the N-tosylpyrrolidine derivatives in good yield.63 The same salt can also catalyse Markovnikov addition of electron-rich arenes and heteroarenes to styrenes, giving rise to 1,1-diarylalkanes at 80 °C.64... [Pg.328]

A facile intramolecular hydroamination of unactivated alkenes (58), catalysed by the palladium complex (60), has been reported to take place at room temperature. The formation of hydroamination products (59) rather than oxidative amination products is believed to be due to the use of a tridentate ligand, which effectively inhibits -hydride elimination.78... [Pg.332]

The complete catalytic reaction course for the intramolecular hydroamination/ cyclization of hepta-4,5-dien-l-ylamine in the presence of a prototypical [(/ -MesCsb LuCH(SiMe3)2] precatalyst has been critically scrutinized by employing a reliable... [Pg.340]

Intramolecular hydroamination of cyclohexa-2,5-dienes (204) mediated by Bu"Li has been reported to produce the corresponding bicyclic allylic amines (205) with high... [Pg.368]

Intramolecular hydroamination of aminoalkenes CH2=CH(CH2) CH2NH2 and the corresponding alkynes can be catalysed by the calcium /9-diketiminato complex [ HC (C(Me)2N-2,6-Pr2C6H3)2 Ca N(SiMe3)2 (THF)] to produce the corresponding pyrrolidines and piperidines.71... [Pg.300]

Platinum-catalysed intramolecular hydroamination of unactivated alkenes with secondary alkylamines has been reported. Thus, a number of y- and 5-aminoalkenes reacted in the presence of a catalytic 1 2 mixture of [PtCl2(H2C=CH2)]2 (2.5 mol%) and PPh3 in dioxane at 120 °C for 16 h to form the corresponding pyrrolidine derivatives in moderate to good yields. The reaction displayed excellent functional group compatibility and low moisture sensitivity.92... [Pg.304]


See other pages where Intramolecular hydroaminations is mentioned: [Pg.42]    [Pg.357]    [Pg.296]    [Pg.332]    [Pg.717]    [Pg.969]    [Pg.980]    [Pg.1068]    [Pg.156]    [Pg.385]    [Pg.441]    [Pg.191]    [Pg.288]    [Pg.63]    [Pg.97]    [Pg.124]    [Pg.337]    [Pg.485]    [Pg.135]   
See also in sourсe #XX -- [ Pg.518 ]




SEARCH



Amination/intramolecular hydroamination

Aminoalkynes intramolecular hydroamination

Gold intramolecular hydroamination

Hydroamination

Hydroamination intramolecular

Hydroamination intramolecular

Hydroamination intramolecular processes

Hydroamination intramolecular reactions

Hydroaminations

Intramolecular Hydroamination of Alkenes

Intramolecular Hydroamination of Allenes

© 2024 chempedia.info