Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst Brpnsted acidity

A DFT Study of the acid catalysis of the mutarotation of erythrose and threose has looked at reaction in the gas phase, and in a continuum water model.Sodium cation can act as an inhibitor, whereas borane acts as a Lewis acid catalyst. Brpnsted acids H+ and HjO" " are particularly effective, with the activation energy being further lowered using H30" with one bridging H2O. [Pg.5]

Thus, the enhancement of the alkane conversion toward aromatic molecules formation on Zn-modified zeolites could be achieved. So, the effect of Zn, which was earlier attributed either to the dehydrogenation ability of the loaded metal [158] or its ability to afford a recombinative desorption of H-atoms [159], is displayed as an influence of zinc directly on activation of alkane C-H bonds by the catalyst Brpnsted acid sites. [Pg.177]

Still another type of adsorption system is that in which either a proton transfer occurs between the adsorbent site and the adsorbate or a Lewis acid-base type of reaction occurs. An important group of solids having acid sites is that of the various silica-aluminas, widely used as cracking catalysts. The sites center on surface aluminum ions but could be either proton donor (Brpnsted acid) or Lewis acid in type. The type of site can be distinguished by infrared spectroscopy, since an adsorbed base, such as ammonia or pyridine, should be either in the ammonium or pyridinium ion form or in coordinated form. The type of data obtainable is illustrated in Fig. XVIII-20, which shows a portion of the infrared spectrum of pyridine adsorbed on a Mo(IV)-Al203 catalyst. In the presence of some surface water both Lewis and Brpnsted types of adsorbed pyridine are seen, as marked in the figure. Thus the features at 1450 and 1620 cm are attributed to pyridine bound to Lewis acid sites, while those at 1540... [Pg.718]

Fig. XVIII-20. Spectra of pyridine adsorbed on a water-containing molybdenum oxide (IV)-Al203 catalyst L and B indicate features attributed to pyridine adsorbed on Lewis and Brpnsted acid sites, respectively. (Reprinted with permission from Ref. 191. Copyright 1976 American Chemical Society.)... Fig. XVIII-20. Spectra of pyridine adsorbed on a water-containing molybdenum oxide (IV)-Al203 catalyst L and B indicate features attributed to pyridine adsorbed on Lewis and Brpnsted acid sites, respectively. (Reprinted with permission from Ref. 191. Copyright 1976 American Chemical Society.)...
As Olah et al. have reported (81JOC2706), iV-nltropyrazole in the presence of Lewis or Brpnsted acid catalysts is an effective nitrating agent for aromatic substrates. The greater lability of the N—NO2 bond in iV-nltropyrazole compared with aliphatic nltramines was discussed on the basis of its molecular structure as determined by X-ray crystallography. [Pg.270]

Although trityl perchlorate is used to accomplish the glycosidation of the C-8 hydroxyl in 44 with acetoxy glycoside 49, control experiments have demonstrated that no reaction takes place in the presence of 4 A molecular sieves or 2,6-di-terf-butylpyridine. This observation suggests that the actual catalyst is not trityl perchlorate, but perchloric acid. Consistent with this conclusion is the observation that catalytic amounts of a strong Brpnsted acid such as triflic or perchloric acid can catalyze the glycosidation of 44 with 49 in the absence of trityl perchlorate. [Pg.501]

Figures 2.a-c show the pyridine adsorption results. Bronsted acidity is manifested by the bands at 1440-1445,1630-1640 and 1530-1550 cm . Bands at 1600-1630 cm are assigned to pyridine bonded to Lewis acid sites. Certain bands such as the 1440-1460 and 1480-1490 cm can be due to hydrogen-bonded, protonated or Lewis-coordinated pyridine species. Under continuous nitrogen purging, spectra labeled as "A" in Figures 2a-c represent saturation of the surface at room temperature (90 25 unol pyridine/g found in all three tungsta catalysts) and "F" show the baseline due to the dry catalyst. We cannot entirely rule out the possibility of some extent of weakly bound pyridine at room temperature. Nevertheless, the pyridine DRIFTS experiments show the presence of Brpnsted acidity, which is expected to be the result of water of reduction that did not desorb upon purging at the reduction temperature. It is noted that, regardless of the presence of Pt, the intensity of the DRIFTS signals due to pyridine are... Figures 2.a-c show the pyridine adsorption results. Bronsted acidity is manifested by the bands at 1440-1445,1630-1640 and 1530-1550 cm . Bands at 1600-1630 cm are assigned to pyridine bonded to Lewis acid sites. Certain bands such as the 1440-1460 and 1480-1490 cm can be due to hydrogen-bonded, protonated or Lewis-coordinated pyridine species. Under continuous nitrogen purging, spectra labeled as "A" in Figures 2a-c represent saturation of the surface at room temperature (90 25 unol pyridine/g found in all three tungsta catalysts) and "F" show the baseline due to the dry catalyst. We cannot entirely rule out the possibility of some extent of weakly bound pyridine at room temperature. Nevertheless, the pyridine DRIFTS experiments show the presence of Brpnsted acidity, which is expected to be the result of water of reduction that did not desorb upon purging at the reduction temperature. It is noted that, regardless of the presence of Pt, the intensity of the DRIFTS signals due to pyridine are...
Krossner, M., Sauer, J., 1996, Interaction of Water With Brpnsted Acidic Sites of Zeolite Catalysts. Ab Initio Study of 1 1 and 2 1 Surface Complexes , J. Phys. Chem., 100, 6199. [Pg.293]

Glycals can be transformed into 1,6-anhydro sugar derivatives by intramolecular cyclization in the presence of Lewis and Brpnsted acids, a reaction that has been termed the intramolecular Ferrier glycosylation.168 Sharma el al.169 showed that a montmorillonite clay-supported silver reagent can be an efficient catalyst for this transformation. The 1,6-anhydro-2,3-dehydro sugars obtained were then selectively dihydroxylated to furnish 1,6-anhydro saccharides. [Pg.79]

The lifetime of a zeolitic alkylation catalyst depends on the concentration of Brpnsted acid sites. This has been shown by Nivarthy et al. (78), who used a series of zeolites H-BEA with varied concentrations of back-exchanged sodium ions. The sodium decreased the concentration of Brpnsted acid centers, which led to a concomitant decrease in the measured catalyst lifetime during alkylation. [Pg.280]

An interesting variation on sulfated metal oxide type catalysts was presented by Sun et al. (198), who impregnated a dealuminated zeolite BEA with titanium and iron salts and subsequently sulfated the material. The samples exhibited a better time-on-stream behavior in the isobutane/1-butene alkylation (the reaction temperature was not given) than H-BEA and a mixture of sulfated zirconia and H-BEA. The product distribution was also better for the sulfated metal oxide-impregnated BEA samples. These results were explained by the higher concentration of strong Brpnsted acid sites of the composite materials than in H-BEA. [Pg.290]

The catalyst is faujasite derived, with a high concentration of sufficiently strong Brpnsted acid sites and a minimized concentration of Lewis acid sites. It also contains a hydrogenation function. The process operates at temperatures of about 323-373 K with a molar isobutane/alkene ratio between 6 and 12 and a higher alkene space velocity than in the liquid acid-catalyzed processes. Preliminary details of the process concept have been described (240). [Pg.309]

Prior to solving the structure for SSZ-31, the catalytic conversion of hydrocarbons provided information about the pore structure such as the constraint index that was determined to be between 0.9 and 1.0 (45, 46). Additionally, the conversion of m-xylene over SSZ-31 resulted in a para/ortho selectivity of <1 consistent with a ID channel-type zeolite (47). The acidic NCL-1 has also been found to catalyze the Fries rearrangement of phenyl acetate (48). The nature of the acid sites has recently been evaluated using pyridine and ammonia adsorption (49). Both Br0nsted and Lewis acid sites are observed where Fourier transform-infrared (FT IR) spectra show the hydroxyl groups associated with the Brpnsted acid sites are at 3628 and 3598 cm-1. The SSZ-31 structure has also been modified with platinum metal and found to be a good reforming catalyst. [Pg.228]

The most frequently used ylides for carbene-complex generation are acceptor-substituted diazomethanes. As already mentioned in Section 3.1.3.1, non-acceptor-substituted diazoalkanes are strong C-nucleophiles, easy to convert into carbene complexes with a broad variety of transition metal complexes. Acceptor-substituted diazomethanes are, however, less nucleophilic (and more stable) than non-acceptor-substituted diazoalkanes, and require catalysts of higher electrophilicity to be efficiently decomposed. Not surprisingly, the very stable bis-acceptor-substituted diazomethanes can be converted into carbene complexes only with strongly electrophilic catalysts. This order of reactivity towards electrophilic transition metal complexes correlates with the reactivity of diazoalkanes towards other electrophiles, such as Brpnsted acids or acyl halides. [Pg.172]

An extensive review of the use of chiral Lewis acid catalysts in Diels-Alder cycloadditions has been presented. Brpnsted acid-assisted chiral Lewis acids have been shown to be highly efficient catalysts for the enantioselective Diels-Alder reactions of a- and /3-substituted-Q, /i-enals with numerous dienes. The chiral Lewis acid-catalysed Diels-Alder reaction between cyclopentadiene and alkenoyloxazolidi-nones can be catalysed by bis(oxazolone)magnesium catalysts. ... [Pg.475]

The water-soluble palladium complex prepared from [Pd(MeCN)4](Bp4)2 and tetrasulfonated DPPP (34, n=3, m=0) catalyzed the copolymerization of CO and ethene in neutral aqueous solutions with much lower activity [21 g copolymer (g Pd) h ] [53] than the organosoluble analogue in methanol. Addition of strong Brpnsted acids with weakly coordinating anions substantially accelerated the reaction, and with a catalyst obtained from the same ligand and from [Pd(OTs)2(MeCN)2] but in the presence of p-toluenesulfonic acid (TsOH) 4 kg copolymer was produced per g Pd in one hour [54-56] (Scheme 7.16). Other tetrasulfonated diphosphines (34, n=2, 4 or 5, m=0) were also tried in place of the DPPP derivative, but only the sulfonated DPPB (n=4) gave a catalyst with considerably higher activity [56], Albeit with lower productivity, these Pd-complexes also catalyze the CO/ethene/propene terpolymerization. [Pg.206]

There has been great interest in the area of chiral acid catalysts in organic synthesis over the past few decades. This topic has been the subject of several previous reviews. For example, the book Lewis Acids in Organic Synthesis (edited by Hisashi Yamamoto) was published by Wiley-VCH in 2000. In this chapter, successful and significant chiral Brpnsted acid catalysts, chiral Lewis acid catalysts [typical Lewis acidic elements main group elements, B(III) and Al(III), and early transition metal, Ti(IV)], and Lewis acid-assisted chiral Brpnsted acid catalysts developed after 2000 are discussed. Chiral acid/base catalysts wdl be discussed in Chapter 13 by Shibasaki and Kanai. [Pg.359]

This reaction encompasses a number of interesting features (general Brpnsted acid/ Brpnsted base catalysis, bifunctional catalysis, enantioselective organocatalysis, very short hydrogen bonds, similarity to serine protease mechanism, oxyanion hole), and we were able to obtain a complete set of DFT based data for the entire reaction path, from the starting catalyst-substrate complex to the product complex. [Pg.7]

Bifunctional catalysts have proven to be very powerful in asymmetric organic transformations [3], It is proposed that these chiral catalysts possess both Brpnsted base and acid character allowing for activation of both electrophile and nucleophile for enantioselective carbon-carbon bond formation [89], Pioneers Jacobsen, Takemoto, Johnston, Li, Wang and Tsogoeva have illustrated the synthetic utility of the bifunctional catalysts in various organic transformations with a class of cyclohexane-diamine derived catalysts (Fig. 6). In general, these catalysts contain a Brpnsted basic tertiary nitrogen, which activates the substrate for asymmetric catalysis, in conjunction with a Brpnsted acid moiety, such as urea or pyridinium proton. [Pg.172]


See other pages where Catalyst Brpnsted acidity is mentioned: [Pg.482]    [Pg.482]    [Pg.156]    [Pg.1065]    [Pg.136]    [Pg.137]    [Pg.53]    [Pg.127]    [Pg.329]    [Pg.669]    [Pg.124]    [Pg.280]    [Pg.282]    [Pg.283]    [Pg.285]    [Pg.288]    [Pg.292]    [Pg.144]    [Pg.291]    [Pg.159]    [Pg.207]    [Pg.318]    [Pg.331]    [Pg.40]    [Pg.60]    [Pg.61]    [Pg.147]    [Pg.174]    [Pg.177]    [Pg.178]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Acidity Brpnsted

Baylis-Hillman reactions Brpnsted acid catalysts

Brpnsted

Brpnsted acid

Brpnsted acid catalysis catalysts

Brpnsted acidity, catalyst activity

Catalysts Brpnsted acid

Catalysts Brpnsted acid

Ketones Brpnsted acid catalysts

Prolines Brpnsted acid catalysts

Thiourea Brpnsted acid catalysts

© 2024 chempedia.info