Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylamines secondary

There are examples of nucleophilic displacement of halide from halo-1,2,5-thiadiazoles by ammonia, primary alkylamines, secondary alkylamines, arylamines, sulfonamides, and phthalimide <1984CHEC(6)513, 1996CHEC-II(4)355>, but the reactions often require high temperatures and excess of the nucleophile. [Pg.541]

Mobility-mass trend lines were first demonstrated to be specific for classes of compounds by Karasek, Kim, and Rokushika in 1978 in a study of reduced mobility as a function of compound class." " In this study, they demonstrated that Him trend lines (they reported them as KJni) were larger in the following order primary alkylamines > secondary alkylamines > n-alkanes > tertiary alkylamines > benzene derivatives. These samples were introduced into the IMS as vapors. Thus, the use of Him for class identification appears to be useful for all types of sample introduction. [Pg.66]

A method that achieves the same end result as that desired by alkylation of ammonia but which avoids the formation of secondary and tertiary amines as byproducts is the Gabriel synthesis Alkyl halides are converted to primary alkylamines without contam mation by secondary or tertiary amines The key reagent is the potassium salt of phthal imide prepared by the reaction... [Pg.929]

Ammonia can act as a nucleophile toward primary and some secondary alkyl halides to give primary alkylamines Yields tend to be modest because the primary amine IS itself a nucleophile and undergoes alkylation Alkylation of ammonia can lead to a mixture containing a primary amine a secondary amine a tertiary amine and a quaternary ammonium salt... [Pg.956]

Alkyl azides prepared by nucleophilic substitution by azide ion in primary or secondary alkyl halides are reduced to primary alkylamines by lithium aluminum hydride or by catalytic hydrogenation... [Pg.957]

Secondary alkylamines and secondary arylamines y e d N nitroso amines... [Pg.959]

Substituted Amides. Monosubstituted and disubstituted amides can be synthesized with or without solvents from fatty acids and aLkylamines. Fatty acids, their esters, and acid halides can be converted to substituted amides by reaction with primary or secondary aLkylamines, arylamines, polyamines, or hydroxyaLkylamines (30). Di- -butylamine reacts with oleic acid (2 1 mole ratio) at 200—230°C and 1380 kPa (200 psi) to produce di-A/-butyloleamide. Entrained water with excess -butylamine is separated for recycling later (31). [Pg.184]

Reductive amination of cyclohexanone using primary and secondary aHphatic amines provides A/-alkylated cyclohexylamines. Dehydration to imine for the primary amines, to endocycHc enamine for the secondary amines is usually performed in situ prior to hydrogenation in batch processing. Alternatively, reduction of the /V-a1ky1ani1ines may be performed, as for /V,/V-dimethy1 cyclohexyl amine from /V, /V- di m e th y1 a n i1 i n e [121 -69-7] (12,13). One-step routes from phenol and the alkylamine (14) have also been practiced. [Pg.208]

Amination. Amyl alcohols can react with ammonia or alkylamines to form primary, secondary, or tertiary-substituted amines. Eor example, 3-methyl-butylamine [107-85-7] is produced by reductive ammonolysis of 3-methyl-1-butanol over a Ni catalyst at 150°C (59). Some diisoamyl- and triisoamyl amines are also formed in this reaction. Good selectivities (88%) of neopentyl amine [5813-64-9] are similarly produced by reductive ammonolysis of neopentyl alcohol (60). [Pg.373]

Synthetic methods for the production of citroneUal iaclude the catalytic dehydrogenation of citroneUol (110), the telomerization of isoprene (151), and the Utbium-catalyzed reaction of myrcene with secondary alkylamines (128). [Pg.425]

The small differences in basicity between fflumonia and alkylamines, and fflnong the various classes of alkylamines (primary, secondary, tertiary), come from a mix of effects. Replacing hydrogens of ammonia by alkyl groups affects both sides of the acid-base equilibrium in ways that largely cancel. [Pg.920]

We learned in the preceding section that different reactions are observed when the various classes of alkylamines—primary, secondary, and tertiary—react with nitrosating agents. Although no useful chemistr-y attends the nitrosation of tertiar y alkylamines, electrophilic aromatic substitution by nitrosyl cation ( n Q ) takes place with A,A-dialkyl-arylfflnines. [Pg.945]

Some substituents such as the acylamino group are readily decomposed by many nucleophiles to give a poorer leaving group (e.g., amino). Others, such as nitroamino and sulfonylamino, are less reactive when they are anionized by the nucleophile. 3-Nitroamino-pyridazine (117) and its 6-methyl derivative are readily aminated with benzylamine (130°, short time ). 4,6-Dimethyl- and 6-methyl-2-nitroaminopyrimidine undergo 2-substitution on warming a few minutes with hydroxylamine, hydrazine, primary or secondary alkylamines, or anilines. [Pg.205]

It was clearly shown by NMR spectroscopy that the addition of ammonia or primary or secondary alkylamines at position 5 of the 1,2,4-triazine 4-oxides to give the adducts 89 is a kinetically controlled process, while addition at position 3 to form the ring-opening products 85 is a thermodynamically controlled process. [Pg.283]

Ammonia and other amines are good nucleophiles in SN2 reactions. As a result, the simplest method of alkylamine synthesis is by Sn2 alkylation of ammonia or an alkylamine with an alky) halide. If ammonia is used, a primary amine results if a primary amine is used, a secondary amine results and so on. Even tertiary amines react rapidly with alkyl halides to yield quaternary ammonium salts, R4N+ X-... [Pg.928]

Monoethanolamine (MEA), ethanolamine (ETA) 2-aminoethanol 2-hydroxyethylamine Nt CPLjCHjOH. MW = 61.1. Sp. gr. = 1.012. Flash point 93 °C. Also used as an absorbent for acidic gases in petrochemical operations. A breakdown product of morpholine and so is often found in secondary steam cycles systems. Thought to be superior to morpholine. Available as a 99+% alkylamine, commodity product, from several international manufacturers, including BP Chemicals PLC, Union Carbide, and Texaco Corporation. Commonly available through chemical distributors. [Pg.520]

N-Tosylated P-hydroxy alkylamines (which can be easily hydrolyzed to P-hydroxyamines" ) can be prepared " by treatment of alkenes with the trihydrate of Chloramine-T and a catalytic amount of OSO4. In some cases yields can be improved by the use of phase-transfer catalysis." The reaction has been carried out enantioselectively." In another procedure, certain P-hydroxy secondary alkylamines can be prepared by treatment of alkenes with the osmium compounds... [Pg.1056]

The hydroaminations of electron-deficient alkenes with aniline or small primary alkylamines proceed at high conversions (85-95%, nnder mild conditions, 5 mol%, rt), giving exclnsively the anh-Markovnikov addition product. Secondary dialkyl or bnlky primary amines require longer reaction times. With amines containing P-hydrogens, no imine side-products were observed. [Pg.44]

In order to regulate the size of gold nanoparticles, equimolar amount of primary, secondary, or tertiary alkylamines [CnNH2, (Cn)2NH, or (Cn)3N] is added to the controlled thermolysis procedure of... [Pg.368]

Chlorofluorans react with a wide variety of primary amines such as alkylamines, cycloalkylamines, aralkylamines, and arylamines, as well as cyclic secondary amines such as piperidine, morpholine, etc., to prepare 3 -aminofluorans. [Pg.192]

The significance of the values calculated for the effective polarizability was first established with physical data, among them relaxation energies derived from a combination of X-ray photoelectron and Auger spectroscopy, as well as N-ls ESCA data53, 54). From our point of view, however, the most important applications of effective polarizability are to be found in correlating chemical reactivity data. Thus, the proton affinity (PA) of 49 unsubstituted alkylamines comprising primary, secondary and tertiary amines of a variety of skeletal types correlate directly with effective polarizability values (Fig. 22). [Pg.55]

The reaction of 49 with alkylamines has been examined in the context of Cp2Mg-MR3-NH3 (M = group 13 metal) mixtures as CVD precursors. Addition of primary and secondary amines to 49 at ambient temperature in toluene affords stable amine adducts in good yield (Table 3). Most adducts can be sublimed at under 100 °C/0.05 torr in... [Pg.96]

Arylidene alkylamines and diphenyl cyclopropenone gave rise to products 397-399, whose formation can be interpreted by means of oxidative secondary reactions of the 5 H-A2-pyrrolin-4-one 396 (R2 = H) initially generated252. ... [Pg.85]

The flow-cell design was introduced by Stieg and Nieman [166] in 1978 for analytical uses of CL. Burguera and Townshend [167] used the CL emission produced by the oxidation of alkylamines by benzoyl peroxide to determine aliphatic secondary and tertiary amines in chloroform or acetone. They tested various coiled flow cells for monitoring the CL emission produced by the cobalt-catalyzed oxidation of luminol by hydrogen peroxide and the fluorescein-sensitized oxidation of sulfide by sodium hypochlorite [168], Rule and Seitz [169] reported one of the first applications of flow injection analysis (FTA) in the CL detection of peroxide with luminol in the presence of a copper ion catalyst. They... [Pg.28]

Another situation is observed when salts or transition metal complexes are added to an alcohol (primary or secondary) or alkylamine subjected to oxidation in this case, a prolonged retardation of the initiated oxidation occurs, owing to repeated chain termination. This was discovered for the first time in the study of cyclohexanol oxidation in the presence of copper salt [49]. Copper and manganese ions also exert an inhibiting effect on the initiated oxidation of 1,2-cyclohexadiene [12], aliphatic amines [19], and 1,2-disubstituted ethenes [13]. This is accounted for, first, by the dual redox nature of the peroxyl radicals H02, >C(0H)02 and >C(NHR)02 , and, second, for the ability of ions and complexes of transition metals to accept and release an electron when they are in an higher- and lower-valence state. [Pg.586]

Control of product solubility by compressed C02 is also possible. Primary and secondary alkylamines form carbamic acids or ammonium carbamates in the... [Pg.1370]


See other pages where Alkylamines secondary is mentioned: [Pg.439]    [Pg.1053]    [Pg.1053]    [Pg.439]    [Pg.1053]    [Pg.1053]    [Pg.135]    [Pg.263]    [Pg.218]    [Pg.3]    [Pg.923]    [Pg.216]    [Pg.218]    [Pg.367]    [Pg.308]    [Pg.341]    [Pg.373]    [Pg.373]    [Pg.226]    [Pg.201]    [Pg.231]    [Pg.387]    [Pg.266]    [Pg.419]    [Pg.167]   
See also in sourсe #XX -- [ Pg.463 ]




SEARCH



Alkyl derivatives secondary alkylamines

Alkylaminations

Alkylamine

Alkylamines

Aryl derivatives secondary alkylamines

© 2024 chempedia.info