Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular forces importance

What are intermolecular forces in polymers What are the main types of intermolecular forces Which is the most common one Why are intermolecular forces important What is the typical range of intermolecular forces, in A How might we measure the intermolecular forces in a polymer ... [Pg.22]

What are intermolecular forces Why are intermolecular forces important ... [Pg.440]

The next point of interest has to do with the question of how deep the surface region or region of appreciably unbalanced forces is. This depends primarily on the range of intermolecular forces and, except where ions are involved, the principal force between molecules is of the so-called van der Waals type (see Section VI-1). This type of force decreases with about the seventh power of the intermolecular distance and, consequently, it is only the first shell or two of nearest neighbors whose interaction with a given molecule is of importance. In other words, a molecule experiences essentially symmetrical forces once it is a few molecular diameters away from the surface, and the thickness of the surface region is of this order of magnitude (see Ref. 23, for example). (Certain aspects of this conclusion need modification and are discussed in Sections X-6C and XVII-5.)... [Pg.56]

As also noted in the preceding chapter, it is customary to divide adsorption into two broad classes, namely, physical adsorption and chemisorption. Physical adsorption equilibrium is very rapid in attainment (except when limited by mass transport rates in the gas phase or within a porous adsorbent) and is reversible, the adsorbate being removable without change by lowering the pressure (there may be hysteresis in the case of a porous solid). It is supposed that this type of adsorption occurs as a result of the same type of relatively nonspecific intermolecular forces that are responsible for the condensation of a vapor to a liquid, and in physical adsorption the heat of adsorption should be in the range of heats of condensation. Physical adsorption is usually important only for gases below their critical temperature, that is, for vapors. [Pg.599]

Because so many factors contribute to the net intermolecular attractive force it is not always possible to predict which of two compounds will have the higher boiling point We can however use the boiling point behavior of selected molecules to inform us of the relative importance of various intermolecular forces and the structural features that influence them... [Pg.148]

In many cases, pressurized gases in vessels do not behave as ideal gases. At very high pressures, van der Waals forces become important, that is, intermolecular forces and finite molecule size influence the gas behavior. Another nonideal situation is that in which, following the rupture of a vessel containing both gas and liquid, the liquid flashes. [Pg.230]

When thinking about chemical reactivity, chemists usually focus their attention on bonds, the covalent interactions between atoms within individual molecules. Also important, hotvever, particularly in large biomolecules like proteins and nucleic acids, are a variety of interactions between molecules that strongly affect molecular properties. Collectively called either intermolecular forces, van der Waals forces, or noncovalent interactions, they are of several different types dipole-dipole forces, dispersion forces, and hydrogen bonds. [Pg.61]

When iodine chloride is heated to 27°C, the weak intermolecular forces are unable to keep the molecules rigidly aligned, and the solid melts. Dipole forces are still important in the liquid state, because the polar molecules remain close to one another. Only in the gas, where the molecules are far apart, do the effects of dipole forces become negligible. Hence boiling points as well as melting points of polar compounds such as Id are somewhat higher than those of nonpolar substances of comparable molar mass. This effect is shown in Table 9.3. [Pg.237]

We should point out that the calculations involved in Example 12.6 assume ideal gas behavior. At the conditions specified (1 atm, relatively high temperatures), this assumption is a good one. However, many industrial gas-phase reactions are carried out at very high pressures. In that case, intermolecular forces become important, and calculated yields based on ideal gas behavior may be seriously in error. [Pg.337]

Polyesters are another important class of polyols. There are many polyester types used, so a generic structure is shown in Scheme 4.4. They are often based on adipic acid and either ethylene glycol (ethylene adipates) or 1,4-butanediol (butylene adipates). Polyesters, because of the polar carbonyl groups, contribute more to intermolecular forces, and physical properties such as tear and impact resistance are often improved by using them. They are also utilized for their solvent and acid resistance and light stability. Relatively poor hydrolytic stability is... [Pg.212]

The presence of intermolecular forces also accounts for the variation in the compression factor. Thus, for gases under conditions of pressure and temperature such that Z > 1, the repulsions are more important than the attractions. Their molar volumes are greater than expected for an ideal gas because repulsions tend to drive the molecules apart. For example, a hydrogen molecule has so few electrons that the its molecules are only very weakly attracted to one another. For gases under conditions of pressure and temperature such that Z < 1, the attractions are more important than the repulsions, and the molar volume is smaller than for an ideal gas because attractions tend to draw molecules together. To improve our model of a gas, we need to add to it that the molecules of a real gas exert attractive and repulsive forces on one another. [Pg.288]

In Chapter 4 we considered gases, in which intermolecular forces play only a minor role. Here, we deal with liquids and solids, in which the forces that hold molecules together are of crucial importance for determining the physical properties of bulk samples. Individual water molecules, for instance, are not wet, but bulk water is wet because water molecules are attracted to other substances and spread over their surfaces. Individual water molecules neither freeze nor boil, but bulk water does, because in the process of freezing molecules stick together and form a rigid array and in boiling they separate from one another and form a gas. [Pg.299]

We have been using intermolecular interaction and intermolecular force almost interchangeably. However, it is important to distinguish the force from the potential energy of interaction. In classical mechanics, the magnitude of the force,... [Pg.328]

One example of a familiar amide is the pain-relieving drug sold as Tylenol (14) we shall see another important example when we consider the polymer known as nylon in Section 19.10. Many amides have N—H bonds that can rake part in hydrogen bonding, and so the intermolecular forces between their molecules are relatively strong. [Pg.880]

Forces of attraction between molecules are responsible for the existence of liquids and solids. In the absence of these intermolecular forces, all molecules would move independently, and all substances would be gases. The natural phases of the elements indicate the importance of intermolecular forces. At room temperature and pressure, only 11 elements are gases. Mercuiy and bromine are liquids, and all the rest of the elements are solids. For all but the 11 gaseous elements, intermolecular forces are too large to ignore under normal conditions. [Pg.749]

In the liquid state, the molecules are still free to move in three dimensions but stiU have to be confined in a container in the same manner as the gaseous state if we expect to be able to measure them. However, there are important differences. Since the molecules in the liquid state have had energy removed from them in order to get them to condense, the translational degrees of freedom are found to be restricted. This is due to the fact that the molecules are much closer together and can interact with one another. It is this interaction that gives the Uquid state its unique properties. Thus, the molecules of a liquid are not free to flow in any of the three directions, but are bound by intermolecular forces. These forces depend upon the electronic structure of the molecule. In the case of water, which has two electrons on the ojQ gen atom which do not participate in the bonding structure, the molecule has an electronic moment, i.e.- is a "dipole". [Pg.12]

All of these intermolecular forces influence several properties of polymers. Dispersion forces contribute to the factors that result in increased viscosity as molecular weight increases. Crystalline domains arise in polyethylene because of dispersion forces. As you will learn later in the text, there are other things that influence both viscosity and crystallization, but intermolecular forces play an important role. In polar polymers, such as polymethylmethacrylate, polyethylene terephthalate and nylon 6, the presence of the polar groups influences crystallization. The polar groups increase the intensity of the interactions, thereby increasing the rate at which crystalline domains form and their thermal stability. Polar interactions increase the viscosity of such polymers compared to polymers of similar length and molecular weight that exhibit low levels of interaction. [Pg.76]

The dynamic behavior of reactions in liquids may differ appreciably from that of gas phase reactions in several important respects. The short-range nature of intermolecular forces leads to several major differences in the macroscopic properties of the system, often with concomitant effects on the dynamics of chemical reactions occurring in the liquid phase. [Pg.215]


See other pages where Intermolecular forces importance is mentioned: [Pg.535]    [Pg.535]    [Pg.1]    [Pg.50]    [Pg.52]    [Pg.271]    [Pg.70]    [Pg.79]    [Pg.212]    [Pg.16]    [Pg.1215]    [Pg.15]    [Pg.162]    [Pg.227]    [Pg.307]    [Pg.60]    [Pg.46]    [Pg.145]    [Pg.220]    [Pg.891]    [Pg.95]    [Pg.215]    [Pg.25]    [Pg.3]    [Pg.749]    [Pg.798]    [Pg.59]    [Pg.126]    [Pg.162]    [Pg.433]    [Pg.32]    [Pg.24]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Long-range intermolecular forces, importance

The Importance of Intermolecular Forces

© 2024 chempedia.info