Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Attraction intermolecular

Induced dipole/induced dipole forces are the only intermolecular attractive forces available to nonpolar molecules such as alkanes In addition to these forces polar molecules engage m dipole-dipole and dipole/mduced dipole attractions The dipole-dipole attractive force is easiest to visualize and is illustrated m Figure 4 3 Two molecules of a polar substance experience a mutual attraction between the positively polarized region of one molecule and the negatively polarized region of the other As its name implies the dipole/induced dipole force combines features of both the induced dipole/mduced dipole and dipole-dipole attractive forces A polar region of one mole cule alters the electron distribution m a nonpolar region of another m a direction that produces an attractive force between them... [Pg.148]

Because so many factors contribute to the net intermolecular attractive force it is not always possible to predict which of two compounds will have the higher boiling point We can however use the boiling point behavior of selected molecules to inform us of the relative importance of various intermolecular forces and the structural features that influence them... [Pg.148]

Hydrocarbons without bulky side groups are held together by London forces, the weakest of intermolecular attractions. This means that the free volume tends to be large for these compounds, so a relatively large amount of cooUng is necessary before the free volume collapses. Thus Tg is low for these compounds. [Pg.255]

The vaporization process requires energy both to overcome intermolecular attractions and to push back the surroundings to make room for the vapor. The quantity AU measures the former, while AH takes both into account. In connection with the mixing process, it is the contribution of intermolecular forces which we seek to evaluate, so AU is a more suitable measure of this quantity. [Pg.528]

It is interesting to note that for a van der Waals gas, the second virial coefficient equals b - a/RT, and this equals zero at the Boyle temperature. This shows that the excluded volume (the van der Waals b term) and the intermolecular attractions (the a term) cancel out at the Boyle temperature. This kind of compensation is also typical of 0 conditions. [Pg.565]

Now let us examine the molecular origin of Molecular polarity may be the result of either a permanent dipole moment p or an induced dipole moment ind here the latter arises from the distortion of the charge distribution in a molecule due to an electric field. We saw in Chap. 8 that each of these types of polarity are sources of intermolecular attraction. In the present discussion we assume that no permanent dipoles are present and note that the induced dipole moment is proportional to the net field strength at the molecule ... [Pg.667]

Bulky, even if highly polari2able, functional groups or atoms that are attached anywhere but on the end of a rod-shaped molecule usually are less favorable for Hquid crystal formation. Enhanced intermolecular attractions are more than countered as the molecule deviates from the required linearity. For example, the inclusion of the bromine atom at position three of 4-decyloxy-3-bromoben2oic acid [5519-23-3] (9) prevents mesomorphic behavior. In other cases the Hquid crystal phases do not disappear, but their ranges are narrower. [Pg.199]

In all of the examples given so far in this chapter the product of polymerisation has been a long chain molecule, a linear polymer. With such materials it should be possible for the molecules to slide past each other under shear forces above a certain temperature such that the molecules have enough energy to overcome the intermolecular attractions. In other words above a certain temperature the material is capable of flow, i.e. it is essentially plastic, whereas below this temperature it is to all intents and purposes a solid. Such materials are referred to as thermoplastics and today these may be considered to be the most important class of plastics material commercially available. [Pg.23]

Figure 4.1. Effect of structure regularity, molecular stiffness and intermolecular attraction on polymer... Figure 4.1. Effect of structure regularity, molecular stiffness and intermolecular attraction on polymer...
In the case of commercial crystalline polymers wider differences are to be noted. Many polyethylenes have a yield strength below 20001bf/in (14 MPa) whilst the nylons may have a value of 12 000 Ibf/in (83 MPa). In these polymers the intermolecular attraction, the molecular weight and the type and amount of crystalline structure all influence the mechanical properties. [Pg.74]

A polar molecule can also induce a dipole on a neighbouring molecule that possesses no permanent dipole. The resultant intermolecular attraction between the permanent and the induced dipole is spoken of as the induction force. Its magnitude is small and independent of temperature. [Pg.79]

If either AA or Fbb is greater than Fab the molecules with the highest intermolecular attraction will tend to congregate or cohere and they will expel the dissimilar molecule with the result that two phases will be formed. These conditions are shown in Figure 5.5 (b). [Pg.80]

As already mentioned molecules cohere because of the presence of one or more of four types of forces, namely dispersion, dipole, induction and hydrogen bonding forces. In the case of aliphatic hydrocarbons the dispersion forces predominate. Many polymers and solvents, however, are said to be polar because they contain dipoles and these can enhance the total intermolecular attraction. It is generally considered that for solubility in such cases both the solubility parameter and the degree of polarity should match. This latter quality is usually expressed in terms of partial polarity which expresses the fraction of total forces due to the dipole bonds. Some figures for partial polarities of solvents are given in Table 5.5 but there is a serious lack of quantitative data on polymer partial polarities. At the present time a comparison of polarities has to be made on a commonsense rather than a quantitative approach. [Pg.85]

The intermolecular attraction between PTFE molecules is very small, the computed solubility parameter being 12.6 (MJ/m ). The polymer in bulk does not thus have the high rigidity and tensile strength which is often associated with polymers with a high softening point. [Pg.365]

The high intermolecular attraction leads to polymers of high melting point. However, above the melting point the melt viscosity is low because of the polymer flexibility at such high temperatures, which are usually more than 200°C above the Tg, and the relatively low molecular weight. [Pg.487]

Thus where R and Rjp are hydrogen the molecule is symmetrical, the absence of bulky side groups leads to high intermolecular attraction and the flexibility of... [Pg.580]

These unusual properties of fluorocarbons reflect theu nonpolar character, low polarizability, and overall relatively weak intermolecular attractions Saturated perfluoro-terr-ammes and -dialkyl ethers also closely resemble fluorocarbons rather than typical amines or ethers in their physical properties [4,... [Pg.980]

A substance exists as a liquid rather than a gas because attractive forces between molecules (intermolecular attractive forces) are greater in the liquid than in the gas phase. Attractive forces between neutral species (atoms or molecules, but not ions) are referred to as van der Waals forces and may be of three types ... [Pg.81]

Induced-dipole/induced-dipole attractions are ver-y weak forces individually, but a typical organic substance can par ticipate in so many of them that they are collectively the most impor tant of all the contributor s to intermolecular- attraction in the liquid state. They are the only forces of attraction possible between nonpolar- molecules such as alkanes. [Pg.82]

The melting points and boiling points of car boxylic acids are higher than those of hydro-carbons and oxygen-containing organic compounds of comparable size and shape and indicate strong intermolecular- attractive forces. [Pg.794]

In the case of nonionic but polar compounds such as sugars, the excellent solvent properties of water stem from its ability to readily form hydrogen bonds with the polar functional groups on these compounds, such as hydroxyls, amines, and carbonyls. These polar interactions between solvent and solute are stronger than the intermolecular attractions between solute molecules caused by van der Waals forces and weaker hydrogen bonding. Thus, the solute molecules readily dissolve in water. [Pg.38]

Figure 26.9 X-ray crystal structure of citrate synthase. Part (a) is a space-filling model and part (b) is a ribbon model, which emphasizes the a-helical segments of the protein chain and indicates that the enzyme is dimeric that is, it consists of two identical chains held together by hydrogen bonds and other intermolecular attractions. Part (cl is a close-up of the active site in which oxaloacetate and an unreactive acetyl CoA mimic are bound. Figure 26.9 X-ray crystal structure of citrate synthase. Part (a) is a space-filling model and part (b) is a ribbon model, which emphasizes the a-helical segments of the protein chain and indicates that the enzyme is dimeric that is, it consists of two identical chains held together by hydrogen bonds and other intermolecular attractions. Part (cl is a close-up of the active site in which oxaloacetate and an unreactive acetyl CoA mimic are bound.
The magnitude of this effect depends on the strength of the attractive forces and hence on the nature of the gas. Intermolecular attractive forces are stronger in C02 than they are in 02, which explains why the deviation from ideality of Vmis greater with carbon dioxide and why carbon dioxide is more readily condensed to a liquid than is oxygen. [Pg.123]

We have now discussed three types of intermolecular forces dispersion forces, dipole forces, and hydrogen bonds. You should bear in mind that all these forces are relatively weak compared with ordinary covalent bonds. Consider, for example, the situation in HzO. The total intermolecular attractive energy in ice is about 50 kj/mol. In contrast, to dissociate one mole of water vapor into atoms requires the absorption of928 kj of energy, that is, 2(OH bond energy). This explains why it is a lot easier to boil water than to decompose it into the elements. Even at a temperature of 1000°C and 1 atm, only about one H20 molecule in a billion decomposes to hydrogen and oxygen atoms. [Pg.240]

The Rh-Rh distance is 3.12 A, long compared with Rh-Rh single bonds (2.624A in Rh2(MeCN) J([, 2.73 A in Rh4(CO)12) there is a weaker (3.31 A) intermolecular attraction. Dipole moment and IR studies indicate that the structure is retained in solution and is, therefore, a consequence of electronic rather than solid-state packing effects. Furthermore, it is found for some other (but not all) [RhCl(alkene)2]2 and [RhCl(CO)(PR3)]2 systems. SCF MO calculations indicate that bending favours a Rh-Cl bonding interaction which also includes a contribution from Rh—Rh bonding [56b]. [Pg.98]

FIGURE 4.28 A plot of the compression factor, Z, as a function of pressure for a variety of gases. An ideal gas has Z = 1 for all pressures. For a few real gases with very weak intermolecular attractions, such as H2, Z is always greater than 1. For most gases, at low pressures the attractive forces are dominant and Z 1 (see inset). At high pressures, repulsive forces become dominant and Z 1 for all gases. [Pg.288]

Real gases consist of atoms or molecules with intermolecular attractions and repulsions. Attractions have a longer range than repulsions. The compression factor is a measure of the strength and type of intermolecular forces. When Z > 1, intermolecular repulsions are dominant when Z < 2, attractions are dominant. [Pg.288]


See other pages where Attraction intermolecular is mentioned: [Pg.42]    [Pg.417]    [Pg.426]    [Pg.1047]    [Pg.529]    [Pg.255]    [Pg.188]    [Pg.123]    [Pg.234]    [Pg.4]    [Pg.79]    [Pg.421]    [Pg.487]    [Pg.581]    [Pg.464]    [Pg.86]    [Pg.14]    [Pg.35]    [Pg.35]    [Pg.265]    [Pg.699]    [Pg.329]    [Pg.94]   
See also in sourсe #XX -- [ Pg.16 ]

See also in sourсe #XX -- [ Pg.13 ]

See also in sourсe #XX -- [ Pg.400 , Pg.401 , Pg.402 , Pg.403 , Pg.404 , Pg.405 ]

See also in sourсe #XX -- [ Pg.73 ]

See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Adhesion, intermolecular attraction forces

Attracting other molecules Intermolecular forces

Boiling points and intermolecular attractive forces

Intermolecular attraction forces, weak

Intermolecular attraction, forces

Intermolecular attraction, forces responsible

Intermolecular forces attractive

Intermolecular forces dipolar attractions

Liquid intermolecular attractive

Molecular geometry intermolecular attraction

Real gases intermolecular attractions

Solid intermolecular attractive

Solid intermolecular attractive forces

The Intermolecular Forces of Attraction

Water intermolecular attraction

© 2019 chempedia.info