Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediate Nitrides

The late-transition metals (Group VII and VIII) either do not form nitrides at all, such as the precious metals, or else form nitrides with intennediate (distorted) interstitial structures. These materials decompose readily and are not chemically stable. Examples are manganese, iron, cobalt, and nickel nitrides. In this respect, they are similar to the intermediate carbides (see Ch. 2, Sec. 6.3). [Pg.161]


Most hafnium compounds have been of slight commercial interest aside from intermediates in the production of hafnium metal. However, hafnium oxide, hafnium carbide, and hafnium nitride are quite refractory and have received considerable study as the most refractory compounds of the Group 4 (IVB) elements. Physical properties of some of the hafnium compounds are shown in Table 4. [Pg.444]

The cubic 2inc blende form of boron nitride is usually prepared from the hexagonal or rhombohedral form at high (4—6 GPa (40—60 kbar)) pressures and temperatures (1400—1700°C). The reaction is accelerated by lithium or alkaline-earth nitrides or amides, which are the best catalysts, and form intermediate Hquid compounds with BN, which are molten under synthesis conditions (11,16). Many other substances can aid the transformation. At higher pressures (6—13 GPa) the cubic or wurt2itic forms are obtained without catalysts (17). [Pg.220]

This reaction is catalyzed by iron, and extensive research, including surface science experiments, has led to an understanding of many of the details (72). The adsorption of H2 on iron is fast, and the adsorption of N2 is slow and characterized by a substantial activation energy. N2 and H2 are both dis so datively adsorbed. Adsorption of N2 leads to reconstmction of the iron surface and formation of stmctures called iron nitrides that have depths of several atomic layers with compositions of approximately Fe N. There is a bulk compound Fe N, but it is thermodynamically unstable when the surface stmcture is stable. Adsorbed species such as the intermediates NH and NH2 have been identified spectroscopically. [Pg.176]

Industrial uses make up most of the market for cyanamide. Calcium cyanamide is used directly for steel nitridation (34) and to some extent for desulfurization (36) (see Steel). Cyanamide is used to produce cationic starch (36) and calcium cyanide. Cyanamide is, of course, the raw material for dicyandiamide and melamine. New uses include intermediates for pesticides, detergents (37), medicines such as antihistamines, hypertension, sedatives, contraceptives, etc (38), the photography industry (39), as an additive for fuels and lubricants, as a paper preservative, and as a cement additive. [Pg.370]

Unlike nitric oxide, NO, the monomeric radical sulfur nitride, NS, is only known as a short-lived intermediate in the gas phase. Nevertheless the properties of this important diatomic molecule have been thoroughly investigated by a variety of spectroscopic and other physical techniques (Section 5.2.1). The NS molecule is stabilized by coordination to a transition metal and a large number of complexes, primarily with metals from Groups 6, 7, 8 and 9, are known. Several detailed reviews of the topic have been published. ... [Pg.123]

There have been few satisfactory demonstrations that decompositions of hydrides, carbides and nitrides proceed by interface reactions, i.e. either nucleation and growth or contracting volume mechanisms. Kinetic studies have not usually been supplemented by microscopic observations and this approach is not easily applied to carbides, where the product is not volatile. The existence of a sigmoid a—time relation is not, by itself, a proof of the occurrence of a nucleation and growth process since an initial slow, or very slow, process may represent the generation of an active surface, e.g. poison removal, or the production of an equilibrium concentration of adsorbed intermediate. The reactions included below are, therefore, tentative classifications based on kinetic indications of interface-type processes, though in most instances this mechanistic interpretation would benefit from more direct experimental support. [Pg.155]

Reactions suggest that Ca3(BN2)N can be viewed as an intermediate in the reaction (4). The substitutional effect of nitride by nitridoborate ions reflects that the linear [N=B=N] ion (with a typical B-N distance around 135 pm) can be viewed as a pseudo-nitride. [Pg.126]

The "conventional" methods for the preparation of SiC and Si3N4, the high temperature reaction of fine grade sand and coke (with additions of sawdust and NaCl) in an electric furnace (the Acheson process) for the former and usually the direct nitridation of elemental silicon or the reaction of silicon tetrachloride with ammonia (in the gas phase or in solution) for the latter, do not involve soluble or fusible intermediates. For many applications of these materials this is not necessarily a disadvantage (e.g., for the application of SiC as an abrasive), but for some of the more recent desired applications soluble or fusible (i.e., proces-sable) intermediates are required. [Pg.143]

The tris-neopentyl Mo(VI) nitride, Mo(-CH2- Bu)3(=N) [134], reacts with surface silanols of silica to yield the tris-neopentyl derivative intermediate [(=SiO)Mo (-CH2- Bu)3(=NH)] followed by reductive elimination of neopentane, as indicated by labeling studies from labeled starting organometallic complex, to yield the final imido neopentylideneneopentyl monosiloxy complex [(=SiO)Mo(=CH- Bu)(-CH2 - Bu)(=NH)] [135]. The surface-bound neopentylidene Mo(VI) complex is an active olefin metathesis catalyst [135]. Improved synthesis of the same surface complex with higher catalytic activity by benzene impregnation rather than dichlorometh-ane on silica dehydroxylated at 700 °C has been reported [136],... [Pg.580]

Iron has a rich surface coordination chemistry that forms the basis of its important catalytic properties. There are many catalytic applications in which metallic iron or its oxides play a vital part, and the best known are associated with the synthesis of ammonia from hydrogen and nitrogen at high pressure (Haber-Bosch Process), and in hydrocarbon synthesis from CO/C02/hydrogen mixtures (Fischer-Tropsch synthesis). The surface species present in the former includes hydrides and nitrides as well as NH, NH2, and coordinated NH3 itself. Many intermediates have been proposed for hydrogenation of carbon oxides during Fischer-Tropsch synthesis that include growing hydrocarbon chains. [Pg.406]

The reasoning which led the author to make this first shot in the dark regarding the usefulness of combinations of solid compounds as ammonia catalysts was as follows If we assume that a labile iron nitride is an interminate in the catalytic ammonia synthesis, every addition to the iron which favors the formation of the iron nitride ought to be of advantage. In other words, the hypothesis was used that surface catalysis acts via the formation of intermediate compounds between the catalyst and one or more of the reactants. An experimental support for this theory was the fact that a stepwise synthesis via the formation and successive hydrogen reduction of nitrides had been carried out with calcium nitrides (Haber), and cerium nitrides (Lipski). Later, the author found molybdenum nitride as being the best intermediate for such a stepwise synthesis. [Pg.87]

The substitution of oxygen by nitrogen in PO4 tetrahedron has allowed the synthesis of a new family of solids with original properties the nitrided phosphates. These systems (e.g., AlPON, AlGaPON) with tunable acid-base properties are used in a growing number of intermediate and fine chemistry production processes [204] as well as supports in heterogeneous catalysis (e.g., dehydrogenation reactions) [205]. [Pg.238]


See other pages where Intermediate Nitrides is mentioned: [Pg.34]    [Pg.180]    [Pg.157]    [Pg.157]    [Pg.160]    [Pg.161]    [Pg.34]    [Pg.180]    [Pg.157]    [Pg.157]    [Pg.160]    [Pg.161]    [Pg.322]    [Pg.148]    [Pg.321]    [Pg.503]    [Pg.54]    [Pg.390]    [Pg.394]    [Pg.419]    [Pg.76]    [Pg.851]    [Pg.278]    [Pg.279]    [Pg.554]    [Pg.1209]    [Pg.152]    [Pg.160]    [Pg.185]    [Pg.292]    [Pg.292]    [Pg.49]    [Pg.267]    [Pg.415]    [Pg.76]    [Pg.383]    [Pg.410]    [Pg.367]    [Pg.580]    [Pg.280]    [Pg.757]    [Pg.407]    [Pg.261]   


SEARCH



© 2024 chempedia.info