Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial tension turbulence

The dispersed oil droplet size distribution may vary from point to point in a produced water system, and from one system to another. The size distribution is affected by interfacial tension, turbulence, temperature, system shearing (pumping, pressure drop across pipe fitting, etc.), and other factors. The droplet size distributions should be measured in the field when troubleshooting and/or upgrading systems, whenever possible. [Pg.117]

Values of interfacial tension of nucleus from turbulent jet measurements, by various equations [44]. [Pg.336]

Atomization. A gas or Hquid may be dispersed into another Hquid by the action of shearing or turbulent impact forces that are present in the flow field. The steady-state drop si2e represents a balance between the fluid forces tending to dismpt the drop and the forces of interfacial tension tending to oppose distortion and breakup. When the flow field is laminar the abiHty to disperse is strongly affected by the ratio of viscosities of the two phases. Dispersion, in the sense of droplet formation, does not occur when the viscosity of the dispersed phase significantly exceeds that of the dispersing medium (13). [Pg.100]

The mass-transfer coefficients depend on complex functions of diffii-sivity, viscosity, density, interfacial tension, and turbulence. Similarly, the mass-transfer area of the droplets depends on complex functions of viscosity, interfacial tension, density difference, extractor geometry, agitation intensity, agitator design, flow rates, and interfacial rag deposits. Only limited success has been achieved in correlating extractor performance with these basic principles. The lumped parameter deals directly with the ultimate design criterion, which is the height of an extraction tower. [Pg.1464]

Interfacial turbulence [60] Due to a nonuniform distribution of surfactant molecules at the interface or to local convection currents close to the interface, interfacial tension gradients lead to a mechanical instability of the interface and therefore to production of small drops. [Pg.10]

The second complicating factor is interfacial turbulence (1, 12), very similar to the surface turbulence discussed above. It is readily seen when a solution of 4% acetone dissolved in toluene is quietly placed in contact with water talc particles sprinkled on to the plane oil surface fall to the interface, where they undergo rapid, jerky movements. This effect is related to changes in interfacial tension during mass transfer, and depends quantitatively on the distribution coefficient of the solute (here acetone) between the oil and the water, on the concentration of the solute, and on the variation of the interfacial tension with this concentration. Such spontaneous interfacial turbulence can increase the mass-transfer rate by 10 times 38). [Pg.22]

What is the mechanism which results in rapid coalescence if mass transfer occurs from the drops but slow or no coalescence if both phases are mutually saturated Interfacial turbulence caused by local gradients in interfacial tension looks promising. [Pg.91]

In this equation. Act is taken as the maximum possible surface tension lowering. Hence for a solute-free continuous phase, Aa is the difference between the interfacial tension for the solvent-free system and the equilibrium interfacial tension corresponding to the solute concentration in the dispersed phase. Equation (10-6) indicates a strong effect of the viscosity ratio k on the mass transfer coefficient as found experimentally (LI 1). For the few systems in which measurements are reported (Bll, Lll, 04), estimates from Eq. (10-6) have an average error of about 30% for the first 5-10 seconds of transfer when interfacial turbulence is strongest. [Pg.248]

Microemulsions, like micelles, are considered to be lyophilic, stable, colloidal dispersions. In some systems the addition of a fourth component, a co-surfactant, to an oil/water/surfactant system can cause the interfacial tension to drop to near-zero values, easily on the order of 10-3 - 10-4 mN/m, allowing spontaneous or nearly spontaneous emulsification to very small drop sizes, typically about 10-100 nm, or smaller [223]. The droplets can be so small that they scatter little light, so the emulsions appear to be transparent. Unlike coarse emulsions, microemulsions are thought to be thermodynamically stable they do not break on standing or centrifuging. The thermodynamic stability is frequently attributed to a combination of ultra-low interfacial tensions, interfacial turbulence, and possibly transient negative interfacial tensions, but this remains an area of continued research [224,225],... [Pg.97]

While interfacial contaminants tend to reduce the mass transfer coefficients by causing the droplets to be stagnant rather than circulating, another surface effect may enhance mass transfer. This is the Marangoni effect, whereby local variations in interfacial tension due to the mass transfer process itself can create rapid motions (interfacial turbulence) at the interface. [Pg.485]

Interfacial tension (y) and buoyancy are of prime importance. Under conditions of highly turbulent agitation, the droplet size is determined by breakup with fluid eddies, and the relationship... [Pg.486]

Another role of the surfactant is to initiate interfacial instability, e.g., by creating turbulence and Raykleigh and Kelvin-Helmholtz instabilities. Turbulence eddies tend to disrupt the interface since they create local pressures. Interfacial instabilities may also occur for cylindrical threads of disperse phase during emulsification. Such cylinders undergo deformation and become unstable under certain conditions. The presence of surfactants will accelerate these instabilities as a result of the interfacial tension gradient. [Pg.512]

Wang CY and Calabrese RV. Drop breakup in turbulent stirred-tank. Part II Relative influence of viscosity and interfacial tension. AIChE J 1986 32 667-676. [Pg.735]

Numerous studies have shown that mass transfer of solute from one phase to the other can alter the behavior of a liquid-liquid dispersion—because of interfacial tension gradients that form along the surface of a dispersed drop. For example, see Sawistowski and Goltz, Trans. Inst. Chem. Engrs., 41, p. 174 (1963) BaWcer, van Buytenen, and Beek, Chem Eng. Sci., 21(11), pp. 1039-1046 (1966) Rucken-stein and Berbente, Chem. Eng. Sci., 25(3), pp. 475—482 (1970) Lode and Heideger, Chem. Eng. Sci., 25(6), pp. 1081—1090 (1970) and Takeuchi and Numata, Int. Chem. Eng., 17(3), p. 468 (1977). These interfacial tension gradients can induce interfaci turbulence and circulation within drops. These effects, known as Marangoni instabilities, have been shown to enhance mass-transfer rates in certain cases. [Pg.1729]

A typical example for a stirred two-phase system with a volume fraction of 30 vol.% organic phase dispersed in water, an interfacial tension of 25 mN m-1 and a specific power input of 0.5 W L 1 shows a droplet diameter in the range of 250 pun and a specific interface of about 10 m2 L 1. These dimensions maybe estimated from simple empirical correlations between the Sauter mean diameter of the dispersed phase (zf2.3) and the characteristic Weber number (We). In case of turbulent mixing the following correlation is proposed in the literature for calculation of the mean diameter of dispersed droplets [24]... [Pg.153]


See other pages where Interfacial tension turbulence is mentioned: [Pg.64]    [Pg.1481]    [Pg.618]    [Pg.250]    [Pg.77]    [Pg.249]    [Pg.139]    [Pg.101]    [Pg.103]    [Pg.198]    [Pg.1733]    [Pg.59]    [Pg.172]    [Pg.155]    [Pg.1304]    [Pg.1836]    [Pg.155]    [Pg.1728]    [Pg.1788]    [Pg.956]    [Pg.956]    [Pg.113]    [Pg.633]    [Pg.176]    [Pg.42]    [Pg.102]    [Pg.119]    [Pg.1722]    [Pg.1782]    [Pg.248]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Interfacial tension

© 2024 chempedia.info