Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer rate enhanced

Xie W, Ji X, Peng X, et al Mass transfer rate enhancement for CO2 separation using ionic liquids theoretical study on the mechanism of rate enhancement, AIChE J, 2015. Accepted. [Pg.161]

Static mixing of immiscible Hquids can provide exceUent enhancement of the interphase area for increasing mass-transfer rate. The drop size distribution is relatively narrow compared to agitated tanks. Three forces are known to influence the formation of drops in a static mixer shear stress, surface tension, and viscous stress in the dispersed phase. Dimensional analysis shows that the drop size of the dispersed phase is controUed by the Weber number. The average drop size, in a Kenics mixer is a function of Weber number We = df /a, and the ratio of dispersed to continuous-phase viscosities (Eig. 32). [Pg.436]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

Equation 10.30 is known as Stefan s Law(3). Thus the bulk flow enhances the mass transfer rate by a factor Cj/Cjj, known as the drift factor. The fluxes of the components are given in Table 10.1. [Pg.578]

Pulsed electric field is another alternative to conventional methods of extraction. PEF enhances mass transfer rates using an external electrical field, which results in an electric potential across the membranes of matrix cells that minimizes thermal degradation and changes textural properties. PEF has been considered as a nonthermal pretreatment stage used to increase the extraction efficiency, increasing also permeability throughout the cell membranes. [Pg.236]

For a more general and quantitative description of the mass transfer rate and in the absence of mass transfer limitations on the gas side, the enhancement factor E> 1 is defined as ... [Pg.1531]

Hence, water molecules enhance the acidic properties of the zeolite s Bronsted acids. Adsorbate-adsorbent interactions and, therefore, adsorbent selectivity and adsorbate mass transfer rates are altered due to water polarization. When developing an adsorbent to be used in a commercial adsorptive separation process, the water content of the adsorbent is adjusted to balance adsorbent selectivity and component mass transfer rate. [Pg.219]

Some of these stability issues can be addressed by the use of protective barrier membranes, at the risk of aggravating another fundamental challenge reactant mass transfer. Typical reactants present in vivo are available only at low concentrations (glucose, 5 mM oxygen, 0.1 mM lactate, 1 mM). Maximum current density is therefore limited by the ability of such reactants to diffuse to and within bioelectrodes. In the case of glucose, flux to cylindrical electrodes embedded in the walls of blood vessels, where mass transfer is enhanced by blood flow of 1—10 cm/s, is expected to be 1—2 mA/cm. ° Mass-transfer rates are even lower in tissues, where such convection is absent. However, microscale electrodes with fiber or microdot geometries benefit from cylindrical or spherical diffusion fields and can achieve current densities up to 1 mA/cm at the expense of decreased electrode area. ... [Pg.631]

For simplicity, this section discusses only the mass transfer of one component in a liquid-liquid system with negligible miscibility of both liquids and with one transitional component. On the other hand, calculations must consider mass transfer rates of several components and more or less strong variation in the mass flows along the column, where both complicate the equation considerably [21-23]. Chemical reactions may cause further complications. Their kinetics can enhance the mass transfer coefficients and, therefore, the reaction equations have to be part of the mathematical model of the extractor [24,25]. [Pg.405]

The importance of temperature control of the GPC column cannot be overstated. The use of temperatures above ambient results in lower mobile-phase viscosity, which in turn reduces the back pressure generated by the column. Column life is prolonged, and in some cases higher flow rates may be employed. The reduction in mobile-phase viscosity improves both the rate and efficiency of mass transfer processes, enhancing column performance. While... [Pg.202]

By placing the impeller within a draft tube within the reactor, the fluids are forced to pass through the impeller, where the bubbles are redispersed by impacting on the impeller surfaces. The draft tube is placed in the center of the reactor so the fluids recirculate repeatedly (a recycle reactor) to allow bubbles to be repeatedly redispersed in the draft tube. The overall reactor becomes well mixed and is therefore described by the CSTR equations. The rapid flow of this reactor enhances the mass transfer rate and thus increases the overall reaction rate if it is limited by mass transfer of a reactant from the liquid phase into the bubbles. [Pg.504]

There is conflicting evidence regarding the extent to which imposed vibrations increase particle to fluid heat and mass transfer rates (G2), with some authors even claiming that transfer rates are decreased. For sinusoidal velocity variations superimposed on steady relative motion, enhancement of transfer depends on a scale ratio A/d and a velocity ratio Af /Uj (G3). These quantities are rather like the scale and intensity of turbulence (see Chapter 10). For Af /Uj < l/2n, the vibrations do not cause reversal in the relative motion and the enhancement of mass transfer has been correlated (G3) by... [Pg.312]

In addition to importance of the catalyst composition and temperature, we have shown that methane partial oxidation selectivity is strongly affected by the mass transfer rate. Our experiments show that increasing the linear velocity of the gases or choosing a catalyst geometry that gives thinner boundary layers enhances the selectivity of formation of H2 and CO. Since H2 and CO are essentially intermediate... [Pg.425]

Regimes 2 and 3 - moderate reactions in the bulk (2) or in thefdm (3) and fast reactions in the bulk (3) For higher reaction rates and/or lower mass transfer rates, the ozone concentration decreases considerably inside the film. Both chemical kinetics and mass transfer are rate controlling. The reaction takes place inside and outside the film at a comparatively low rate. The ozone consumption rate within the film is lower than the ozone transfer rate due to convection and diffusion, resulting in the presence of dissolved ozone in the bulk liquid. The enhancement factor E is approximately one. This situation is so intermediate that it may occur in almost any application, except those where the concentration of M is in the micropollutant range. No methods exist to determine kLa or kD in this regime. [Pg.90]

Regime 5 - instantaneous reactions at an reaction plane developing inside the film For very high reaction rates and/or (very) low mass transfer rates, ozone reacts immediately at the surface of the bubbles. The reaction is no longer dependent on ozone transfer through the liquid film kL or the reaction constant kD, but rather on the specific interfacial surface area a and the gas phase concentration. Here the resistance in the gas phase may be important. For lower c(M) the reaction plane is within the liquid film and both film transfer coefficients as well as a can play a role. The enhancement factor can increase to a high value E > > 3. [Pg.91]

A convention used in most literature on ozone mass transfer and in the rest of this book is to define the mass transfer coefficient as the one that describes the mass transfer rate without reaction, and to use the enhancement factor E to describe the increase due to the chemical reaction. Furthermore, the simplification that the major resistance lies in the liquid phase is used throughout the rest of the book. This is also based on the assumption that the mass transfer rate describes physical absorption of ozone or oxygen, since the presence of a chemical reaction can change this. This means that KLa - kLa and the concentration gradient can be described by the difference between the concentration in equilibrium with the bulk gas phase cL and the bulk liquid concentration cL. So the mass transfer rate is defined as ... [Pg.91]

Furthermore, it is almost impossible to use ozone for fc, -measurements when organic substances are present that are (easily) oxidized by molecular ozone. Mass transfer enhancement will occur during such measurements, so that the mass transfer coefficient based on only the physical process cannot be determined. In this case, the oxygen mass transfer coefficient kLa 02) should be determined to assess the mass transfer rate without reaction. The enhanced mass transfer due to reaction should be considered separately, because it is not only dependent on the parameters listed above in equation 3-10, but also dependent on the concentration of the reactants. [Pg.106]

The selectivity of the ozone reaction in pure solvent or water-solvent systems is known from early studies conducted by chemists under analytical and preparative aspects (Bailey, 1958). Inert solvents (e. g. pentane, carbon tetrachloride) provide an opportunity to produce and study oxidation products of the ozonolysis, such as ozonides at low temperatures (Criegee, 1975). Only in the last two decades have ozonation techniques been developed and studied that utilize the higher ozone solubility, enhanced mass transfer rates, higher reaction rates etc. to be found in water-solvent systems. [Pg.154]


See other pages where Mass transfer rate enhanced is mentioned: [Pg.340]    [Pg.340]    [Pg.429]    [Pg.514]    [Pg.1469]    [Pg.263]    [Pg.618]    [Pg.297]    [Pg.305]    [Pg.701]    [Pg.95]    [Pg.477]    [Pg.62]    [Pg.602]    [Pg.17]    [Pg.411]    [Pg.181]    [Pg.1112]    [Pg.367]    [Pg.1]    [Pg.13]    [Pg.374]    [Pg.314]    [Pg.55]    [Pg.62]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.199]    [Pg.74]    [Pg.89]    [Pg.289]   
See also in sourсe #XX -- [ Pg.87 , Pg.88 , Pg.89 , Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 ]




SEARCH



Enhancement factor, mass transfer rate

Enhancement of the Mass Transfer Rates

Mass enhancement

Mass rates

Mass transfer, enhancement

Rate enhancement

Transfer rate

Transfer, enhancement

© 2024 chempedia.info