Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intercalation acids

Whereas superaeid (HF/BF3, HF/SbF, HF/TaF FS03FI/SbF3, etc.)-eatalyzed hydroearbon transformations were first explored in the liquid phase, subsequently, solid aeid eatalyst systems, sueh as those based on Nafion-H, longer-chain perfluorinated alkanesulfonic acids, fluorinated graphite intercalates, etc. were also developed and utilized for heterogeneous reactions. The strong acidic nature of zeolite catalysts was also successfully explored in cases such as FI-ZSM-5 at high temperatures. [Pg.164]

Solid Superacids. Most large-scale petrochemical and chemical industrial processes ate preferably done, whenever possible, over soHd catalysts. SoHd acid systems have been developed with considerably higher acidity than those of acidic oxides. Graphite-intercalated AlCl is an effective sohd Friedel-Crafts catalyst but loses catalytic activity because of partial hydrolysis and leaching of the Lewis acid halide from the graphite. Aluminum chloride can also be complexed to sulfonate polystyrene resins but again the stabiUty of the catalyst is limited. [Pg.565]

Nylon-6. Nylon-6—clay nanometer composites using montmorillonite clay intercalated with 12-aminolauric acid have been produced (37,38). When mixed with S-caprolactam and polymerized at 100°C for 30 min, a nylon clay—hybrid (NCH) was produced. Transmission electron microscopy (tern) and x-ray diffraction of the NCH confirm both the intercalation and molecular level of mixing between the two phases. The benefits of such materials over ordinary nylon-6 or nonmolecularly mixed, clay-reinforced nylon-6 include increased heat distortion temperature, elastic modulus, tensile strength, and dynamic elastic modulus throughout the —150 to 250°C temperature range. [Pg.329]

Moleculady mixed composites of montmorillonite clay and polyimide which have a higher resistance to gas permeation and a lower coefficient of thermal expansion than ordinary polyimides have been produced (60). These polyimide hybrids were synthesized using montmorillonite intercalated with the ammonium salt of dodecylamine. When polymerized in the presence of dimethyl acetamide and polyamic acid, the resulting dispersion was cast onto glass plates and cured. The cured films were as transparent as polyimide. [Pg.330]

Other Radioprotective Chemicals. The bis-methylthio- and methylthioamino-derivatives of 1-methylquinolinium iodide and l-methylpyridinium-2-dithioacetic acid provide reasonable protection to mice at much lower doses than the aminothiols, which suggests a different mechanism of action (139). One of these compounds, the 2-(methylthio)-2-piperidino derivative of the l-methyl-2-vinyl quinolinium iodide (VQ), interacts with supercoUed plasmic DNA primarily by intercalation. Minor substitutions on the aromatic quinolinium ring system markedly influence this interaction. Like WR-1065, VQ is positively charged at physiological pH, and the DNA-binding affinities of VQ and WR-1065 appear to be similar. [Pg.493]

Quinacrine concentrates in the scolex of the parasite and causes the muscles needed for holding onto the intestinal wall to relax. The worms are stained yellow and pass from the body, still aUve. Quinacrine can intercalate with DNA and inhibit nucleic acid synthesis. It creates fluorescent bands in deoxyadenylate—deoxythmidylate-rich regions of DNA and has been used as a stain in the study of human genetics. [Pg.245]

Xenon difluoride [55], xenon difluoride complexed with dialkyl sulfides [59], and xenon difluoride intercalated with graphite [90] are all effective reagents for the fluonnalion of acids, enolates, or enols (Table 2)... [Pg.161]

Hydrophobic bonds, or, more accurately, interactions, form because nonpolar side chains of amino acids and other nonpolar solutes prefer to cluster in a nonpolar environment rather than to intercalate in a polar solvent such as water. The forming of hydrophobic bonds minimizes the interaction of nonpolar residues with water and is therefore highly favorable. Such clustering is entropically driven. The side chains of the amino acids in the interior or core of the protein structure are almost exclusively hydrophobic. Polar amino acids are almost never found in the interior of a protein, but the protein surface may consist of both polar and nonpolar residues. [Pg.159]

The secondary and tertiary structures of myoglobin and ribonuclease A illustrate the importance of packing in tertiary structures. Secondary structures pack closely to one another and also intercalate with (insert between) extended polypeptide chains. If the sum of the van der Waals volumes of a protein s constituent amino acids is divided by the volume occupied by the protein, packing densities of 0.72 to 0.77 are typically obtained. This means that, even with close packing, approximately 25% of the total volume of a protein is not occupied by protein atoms. Nearly all of this space is in the form of very small cavities. Cavities the size of water molecules or larger do occasionally occur, but they make up only a small fraction of the total protein volume. It is likely that such cavities provide flexibility for proteins and facilitate conformation changes and a wide range of protein dynamics (discussed later). [Pg.181]

There are other ways in which the lateral organization (and asymmetry) of lipids in biological membranes can be altered. Eor example, cholesterol can intercalate between the phospholipid fatty acid chains, its polar hydroxyl group associated with the polar head groups. In this manner, patches of cholesterol and phospholipids can form in an otherwise homogeneous sea of pure phospholipid. This lateral asymmetry can in turn affect the function of membrane proteins and enzymes. The lateral distribution of lipids in a membrane can also be affected by proteins in the membrane. Certain integral membrane proteins prefer associations with specific lipids. Proteins may select unsaturated lipid chains over saturated chains or may prefer a specific head group over others. [Pg.266]

Inspired by the separation ability of cyclic selectors such as cyclodextrins and crown ethers, Malouk s group studied the synthesis of chiral cyclophanes and their intercalation by cation exchange into a lamellar solid acid, a-zirconium phosphate aiming at the preparation of separation media based on solid inorganic-organic conjugates for simple single-plate batch enantioseparations [77-80]. [Pg.66]

An example of the modular preparation of the cyclophane 3 from the substituted bipyridine 2 and a general tripeptide 1 is shown in Scheme 3-3. The host molecule 3 contains a pre-organized binding pocket. The overall basicity of such molecules also facilitates their intercalation within the lamellas of acidic zirconium phosphate, thus making this chemistry well suited for the desired application. [Pg.67]

AQP6 is expressed in the intercalated cells of the kidney collecting duct. This channel is hardly permeable to water, but capable of transporting anions, including chloride, and is therefore thought to play a role in maintenance of body acid-base balance or in intracellular vesicle acidification. [Pg.216]

The structure of all TK receptors is similar in terms of expression oiTACR genes, since all these genes contain five exons intercalated by four introns [1, 5]. Exon I encodes for the N-terminal extracellular tail, the first intracellular (IC1) and extracellular (EC1) loops and the first, second, and third transmembrane domains (TM1, TM2, and TM3). Exon II encodes for the second intracellular (IC2) and extracellular (EC2) loops and the fourth transmembrane domain (TM4). Exon III encodes for the fifth transmembrane domain (TM5) and the third intracellular loop (IC3). Exon IV encodes for the sixth and seventh transmembrane domains (TM6 and TM7) and the third extracellular loop. Exon V encodes for the C-terminal intracellular tail only. A schematic drawing of the amino acid sequences and TK receptor organization is shown in Fig. 1. [Pg.1184]

The most commonly used dye in fluorescence studies on nucleic acids is ethidium bromide. The dye has broad excitation bands centered around 280 and 460 nm and a strong emission around 600 nm. When the dye hinds to DNA by an intercalative mechanism, its emission is greatly enhanced and slightly shifted in wavelength. In the simplest case with ethidium bromide saturating intercalating sites,... [Pg.46]


See other pages where Intercalation acids is mentioned: [Pg.770]    [Pg.53]    [Pg.59]    [Pg.89]    [Pg.127]    [Pg.770]    [Pg.53]    [Pg.59]    [Pg.89]    [Pg.127]    [Pg.39]    [Pg.734]    [Pg.201]    [Pg.62]    [Pg.183]    [Pg.153]    [Pg.257]    [Pg.260]    [Pg.265]    [Pg.527]    [Pg.572]    [Pg.70]    [Pg.223]    [Pg.295]    [Pg.296]    [Pg.967]    [Pg.422]    [Pg.242]    [Pg.242]    [Pg.602]    [Pg.155]    [Pg.316]    [Pg.372]    [Pg.424]    [Pg.283]    [Pg.289]    [Pg.295]    [Pg.296]    [Pg.314]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Deoxyribonucleic acid intercalation

Ethidium bromide intercalation with nucleic acids

Graphite, intercalation compounds acid salts

Intercalation of sulfuric acid

Intercalation with nucleic acids

© 2024 chempedia.info