Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Injection water, steels

The injection water had not been deaerated. That is, it was just Mississippi River water that contained dissolved oxygen. Oxygen is highly corrosive to carbon steel. [Pg.604]

The materials of constmction of the radiant coil are highly heat-resistant steel alloys, such as Sicromal containing 25% Cr, 20% Ni, and 2% Si. Triethyi phosphate [78-40-0] catalyst is injected into the acetic acid vapor. Ammonia [7664-41-7] is added to the gas mixture leaving the furnace to neutralize the catalyst and thus prevent ketene and water from recombining. The cmde ketene obtained from this process contains water, acetic acid, acetic anhydride, and 7 vol % other gases (mainly carbon monoxide [630-08-0][124-38-9] ethylene /74-< 3 -/7, and methane /74-< 2-<7/). The gas mixture is chilled to less than 100°C to remove water, unconverted acetic acid, and the acetic anhydride formed as a Hquid phase (52,53). [Pg.475]

Waters While MIC-causing bacteria may arrive at the surface of their corrosion worksite by almost any transportation system, there is always water present to allow them to become ac tive and cause MIC to occur. There are plenty of examples of even superpure waters having sufficient microorganisms present to feed, divide, and multiply when even the smallest trace of a viable food-stuff is present (e.g., the so-called watei for injection in the pharmaceutical industiy has been the observed subject of extensive corrosion of pohshed stainless steel tanks, piping, and so on). [Pg.2421]

Electrochemical impedance, weight loss, and potentiodyne techniques can be used to determine the corrosion rates of carbon steel and the activities of both sulfate-reducing bacteria and acid-producing bacteria in a water injection field test. A study revealed that the corrosion rates determined by the potentiodyne technique did not correlate with the bacterial activity, but those obtained by electrochemical impedance spectroscopy (EIS) were comparable with the rates obtained by weight loss measurements [545]. [Pg.80]

Wet air pollution control (WAPC) devices are used to treat exhaust gases from stainless steel pickling operations, thereby generating wastewater, which are treated using the selective catalytic reduction (SCR) technology in which anhydrous ammonia is injected into the gas stream prior to a catalyst to reduce NO, to nitrogen and water. The most common types of catalysts are a metal oxide, a noble metal, or zeolite. [Pg.68]

Zsolnay and Kiel [26] have used flow calorimetry to determine total hydrocarbons in seawater. In this method the seawater (1 litre) was extracted with trichlorotrifluoroethane (10 ml) and the extract was concentrated, first in a vacuum desiccator, then with a stream of nitrogen to 10 pi A 50 pi portion of this solution was injected into a stainless steel column (5 cm x 1.8 mm) packed with silica gel (0.063-0.2 mm) deactivated with 10% of water. Elution was effected, under pressure of helium, with trichlorotrifluoroethane at 5.2 ml per hour and the eluate passed through the calorimeter. In this the solution flowed over a reference thermistor and thence over a detector thermistor. The latter was embedded in porous glass beads on which the solutes were adsorbed with evolution of heat. The difference in temperature between the two thermistors was recorded. The area of the desorption peak was proportional to the amount of solute present. [Pg.382]

Several authors observed CL emission based on reduction reactions. Lu et al. [59] developed a method by applying a Jones reductor for producing unstable reductants. A column (100 X 3 mm i.d.) filled with Zn-Hg particles was inserted into the flow stream of a flow injection system. CL was measured using a homemade CL analyzer. Although the Jones reductor was more effective for the species studied in 0.5-5 mol/L H2S04 solution, the authors found that a lower acid concentration improved the CL emission. Hie optimal pH was 6.5 for V(II), 2.5 for Mo(III), 3.5 for U(III), 3.0 for W(III), 3.0 for Cr(II), 2.5 for Ti(III), and 2.5 for Fe(II). The methods allowed determination of the above-mentioned species at pg/mL to ng/mL levels. It was assumed that the CL reactions were related to the production of superoxide radicals by dissolved oxygen in the solutions. The proposed methods could be successfully applied to the determination of V [60], Mo [61], and U [62] in water or steel samples. [Pg.128]

A liquid flow microcalorimeter, the thermal activity monitor (TAM), is commercially available from ThermoMetric (formerly LKB/Bofors). This instrument consists of two glass or steel ampules with a volume of 3 to 4 cm3 (25 cm3 ampule available with a single detector), placed in a heat sink block. Recently, an injection-titration sample vessel was developed which acts as a microreactor. This vessel is provided with flow-in, flow-out, and titration lines, with a stirring device. The isothermal temperature around the heat sink is maintained by a controlled water bath. Each vessel holder, containing an ampoule, is in direct contact with a thermopile array, and the two arrays are joined in series so that their output voltages subtract. The two pairs of thermopile arrays are oppositely connected to obtain a differential output,... [Pg.63]

In the flow-injection test, mobile phase A is 0.02 M NaH2P04 in water at pH 4.7 (0.005 M NaCl for solid state AgCl reference) mobile phase B has the same composition, but at pH 7. For reductive experiments, use steel tubing for oxidative experiments, use PTFE tubing. [Pg.44]

Figure 4.14 — (A) Flow injection system for the preconcentration and determination of copper P peristaltic pumps A 0.5 M HNOj B sample q = 2.5 mL/min) C water (jq = 0.5 mL/min) E 1 M NaNOj/O.l M NaAcO, pH 5.4 q = 0.5 mL/min F 1 M NaAcO/2 x 10 M Cu pH 5.0 (9 = 1.0 mL/min) 3-5 valves ISE copper ion-selective electrode W waste I and II 2 and 3 mL of chelating ion exchanger for purification III 100 fil of chelating ion exchanger for metal ion preconcentration. (B) Scheme of the flow system for the determination of halides A 4 M HAcO/1 M NaCl/0.57 ppm F B 1 M NaOH/0.5 M NaCl C, mixing coil (1 m x 0.5 mm ID PTFE tube) Cj stainless-steel tube (5 cm x 0.5 mm ID) ISE ion-selective electrode R recorder. (Reproduced from [128] and [129] with permission of Elsevier Science Publishers and the Royal Society of Chemistry, respectively). Figure 4.14 — (A) Flow injection system for the preconcentration and determination of copper P peristaltic pumps A 0.5 M HNOj B sample q = 2.5 mL/min) C water (jq = 0.5 mL/min) E 1 M NaNOj/O.l M NaAcO, pH 5.4 q = 0.5 mL/min F 1 M NaAcO/2 x 10 M Cu pH 5.0 (9 = 1.0 mL/min) 3-5 valves ISE copper ion-selective electrode W waste I and II 2 and 3 mL of chelating ion exchanger for purification III 100 fil of chelating ion exchanger for metal ion preconcentration. (B) Scheme of the flow system for the determination of halides A 4 M HAcO/1 M NaCl/0.57 ppm F B 1 M NaOH/0.5 M NaCl C, mixing coil (1 m x 0.5 mm ID PTFE tube) Cj stainless-steel tube (5 cm x 0.5 mm ID) ISE ion-selective electrode R recorder. (Reproduced from [128] and [129] with permission of Elsevier Science Publishers and the Royal Society of Chemistry, respectively).
Washing the tetryl. The filtered product is despatched in aluminium barrels from the nitration department to a special room where it is poured into a washing tank (Fig. 9). The tank of 1350 1. capacity, fitted with a stirrer, may be of wood lined with stainless steel. It is fed with water through pipe (/), and is heated by direct steam injection through pipe (2). [Pg.59]


See other pages where Injection water, steels is mentioned: [Pg.181]    [Pg.643]    [Pg.126]    [Pg.426]    [Pg.243]    [Pg.180]    [Pg.154]    [Pg.365]    [Pg.126]    [Pg.316]    [Pg.116]    [Pg.216]    [Pg.404]    [Pg.194]    [Pg.995]    [Pg.647]    [Pg.115]    [Pg.330]    [Pg.306]    [Pg.730]    [Pg.484]    [Pg.80]    [Pg.453]    [Pg.64]    [Pg.435]    [Pg.194]    [Pg.95]    [Pg.244]    [Pg.452]    [Pg.130]    [Pg.388]    [Pg.455]    [Pg.172]    [Pg.368]    [Pg.247]    [Pg.686]    [Pg.216]    [Pg.411]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Water injection

© 2024 chempedia.info