Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initial surface effects

The bombardment of a sample with a dose of high energetic primary ions (1 to 20 keV) results in the destruction of the initial surface and near-surface regions (Sect. 3.1.1). If the primary ion dose is higher than 10 ions mm the assumption of an initial, intact surface is no longer true. A sputter equilibrium is reached at a depth greater than the implantation depth of the primary ions. The permanent bombardment of the sample with primary ions leads to several sputter effects more or less present on any sputtered surface, irrespective of the instrumental method (AES, SIMS, GDOES. ..). [Pg.106]

The initial surface, with freshly cut grooves, gave much higher figures than case (1). The nature of the surface will have a marked effect on the physical form of the bubble and the area actually in contact with the surface, as shown in Figure 9.51. [Pg.484]

Figure 2 displays a qualitative correlation between the increase or decrease in CO desorption temperature and relative shifts in surface core-level binding energies (Pd(3d5/2), Ni(2p3/2), or Cu(2p3/2) all measured before adsorbing CO) [66]. In general, a reduction in BE of a core level is accompanied by an enhancement in the strength of the bond between CO and the supported metal monolayer. Likewise, an opposite relationship is observed for an increase in core-level BE. The correlation observed in Figure 2 can be explained in terms of a model based on initial-state effects . The chemisorption bond on metal is dominated by the electron density of the occupied metal orbital to the lowest unoccupied 27t -orbital of CO. A shift towards lower BE decreases the separation of E2 t-Evb thus the back donation increases and vice versa. [Pg.85]

An alternative to the measurement of the dimensions of the indentation by means of a microscope is the direct reading method, of which the Rockwell method is an example. The Rockwell hardness is based on indentation into the sample under the action of two consecutively applied loads - a minor load (initial) and a standardised major load (final). In order to eliminate zero error and possible surface effects due to roughness or scale, the initial or minor load is first applied and produce an initial indentation. The Rockwell hardness is based on the increment in the indentation depth produced by the major load over that produced by the minor load. Rockwell hardness scales are divided into a number of groups, each one of these corresponding to a specified penetrator and a specified value of the major load. The different combinations are designated by different subscripts used to express the Rockwell hardness number. Thus, when the test is performed with 150 kg load and a diamond cone indentor, the resulting hardness number is called the Rockwell C (Rc) hardness. If the applied load is 100 kg and the indentor used is a 1.58 mm diameter hardened steel ball, a Rockwell B (RB) hardness number is obtained. The facts that the dial has several scales and that different indentation tools can be filled, enable Rockwell machine to be used equally well for hard and soft materials and for small and thin specimens. Rockwell hardness number is dimensionless. The test is easy to carry out and rapidly accomplished. As a result it is used widely in industrial applications, particularly in quality situations. [Pg.30]

An initial burst effect was observed in all in vivo studies. There are several possible factors which may cause a burst effect physically absorbed free drug, surface effects, and local tissue inflammation during the initial period of injection. It has been shown that inflammation decreases local tissue pH (15,16) and causes release of hydrolytic enzymes which would increase the hydrolysis of labile bonds, thereby increasing the release of the drug and, subsequently, increasing plasma levels of drug. [Pg.117]

Figure 14 shows the circular dichroism spectra for the LB films of p-CDNH C12-H25 including Naph-SOsNa molecules under the initial surface pressure of 30 mN/m. Different induced circular dichro-isms are clearly observed at1 Bbband of naphthalene, depending on the substituted position the negative and positive Cotton effects occur for 1 - and 2-Naph-SOaNa included in the cavity of the CD... [Pg.93]

In the biomedical literature (e.g. solute = enzyme, drug, etc.), values of kf and kr are often estimated from kinetic experiments that do not distinguish between diffusive transport in the external medium and chemical reaction effects. In that case, reaction kinetics are generally assumed to be rate-limiting with respect to mass transport. This assumption is typically confirmed by comparing the adsorption transient to maximum rates of diffusive flux to the cell surface. Values of kf and kr are then determined from the start of short-term experiments with either no (determination of kf) or a finite concentration (determination of kT) of initial surface bound solute [189]. If the rate constant for the reaction at the cell surface is near or equal to (cf. equation (16)), then... [Pg.475]

If the phase transition is somewhat stronger than we have discussed in the previous subsection, the initial temperature is higher, To 10 MeV. Neutrinos are trapped for a while in the interior of the newly formed quark star. For lower densities, where the quark matter contains trapped neutrinos the direct Urea process is operative and neutrino cooling is a surface effect. [Pg.401]

A critical factor here is the reactivity of the hydrogen by-product that is not only able to gasify the initial surface termination of the carbon fiber but also to etch away the newly formed pyrolytic carbon. This effect is desirable for optimization of the growing structure but additionally slows down the reaction. [Pg.261]

The study of heterogeneous catalysis with the emphasis on the effects of reactant structure stimulates consideration of the reacting system in terms of mutual interactions. Modification of the catalyst surface by the action of reactants is a part of these interactions. This idea is not new, but hitherto little evidence supported it now it is an inherent component of the accepted mechanism of elimination reactions. In general, the working surface may be quite different from the initial surface. Even the solvent may participate in the mechanism, as the results of the Delft school (125, 161, 162) indicate, by temporally accommodating hydrogen species formed in a reaction step from the reactants or hydrogen molecules on the surface. [Pg.191]

Al substitution (0.09-0.16 mol mol ) had no definite effect on the photochemical dissolution of substituted goethite in oxalate at pH 2.6 (Cornell Schindler, 1987). On the other hand, Al substitution depressed the initial (linear) stage of dissolution of synthetic goethites and hematites in mixed dithionite/citrate/bicarbonate solutions (Fig. 12.22) (Torrent et al., 1987). As the variation in initial surface area has already been accounted for, the scatter of data in this figure is presumably due to variations in other crystal properties such as disorder and micropores. Norrish and Taylor (1961) noted that as Al substitution in soil goethites increased, the rate of reductive dissolution dropped (see also Jeanroy et al., 1991). [Pg.330]

We can infer that the band positions of the irradiated semiconductor are greatly influential in controlling the observed redox chemistry and that formation of radical ions produced by photocatalyzed single electron transfer across the semiconductor-electrolyte interface should be a primary mechanistic step in most such photocatalyzed reactions. Whether oxygenation, rearrangement, isomerization, or other consequences follow the initial electron transfer seem to be controlled, however, by surface effects. [Pg.77]

Z3. PMDA-ODA on MgO. PMDA-ODA peel force data shown in Fig. 7 exhibit a very interesting phenomenon as a function of T H exposure. The peel force is significantly increased as the time in T H is increased. This is somewhat unusual, but apparently repeatable. The exposure to APS has not made much difference in the results, which is understandable from the initial surface analyses after IPA cleaning and APS exposure. The XPS data show no detectable amount of APS on the thus exposed MgO surface. The reasons for the peel force increase as a function of T H exposure are not clear at this time. This is, however, due to increased interfacial strength, and not due to the polyimide mechanical properties (Young s modulus and yield stress) changes. If the latter were the case, then we should see similar effects also in the first two cases, which is not seen. However, more detailed analysis is essential to clarify the exact mechanism and this observation merits further study. [Pg.419]

Surface Stabilized Ferroelectric Liquid Crystals (SSFLC)116 Here all three vectors of spontaneous polarization (Fs) are initially aligned by surface effects in thin cells (ca 2 pm). The switchability is due to 180° rotation of the Fs vectors on a cone. [Pg.458]


See other pages where Initial surface effects is mentioned: [Pg.38]    [Pg.40]    [Pg.28]    [Pg.30]    [Pg.312]    [Pg.38]    [Pg.40]    [Pg.28]    [Pg.30]    [Pg.312]    [Pg.212]    [Pg.98]    [Pg.525]    [Pg.2016]    [Pg.383]    [Pg.178]    [Pg.29]    [Pg.1848]    [Pg.153]    [Pg.273]    [Pg.64]    [Pg.333]    [Pg.301]    [Pg.202]    [Pg.271]    [Pg.235]    [Pg.3]    [Pg.10]    [Pg.6]    [Pg.419]    [Pg.422]    [Pg.337]    [Pg.467]    [Pg.468]    [Pg.612]    [Pg.92]    [Pg.98]    [Pg.206]    [Pg.244]    [Pg.30]   


SEARCH



Effectiveness initialization

Initiating Effects

Initiator effect

Surface initiators

Surface-initiated

© 2024 chempedia.info