Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy, advantages

Laser Raman diagnostic teclmiques offer remote, nonintnisive, nonperturbing measurements with high spatial and temporal resolution [158], This is particularly advantageous in the area of combustion chemistry. Physical probes for temperature and concentration measurements can be debatable in many combustion systems, such as furnaces, internal combustors etc., since they may disturb the medium or, even worse, not withstand the hostile enviromnents [159]. Laser Raman techniques are employed since two of the dominant molecules associated with air-fed combustion are O2 and N2. Flomonuclear diatomic molecules unable to have a nuclear coordinate-dependent dipole moment caimot be diagnosed by infrared spectroscopy. Other combustion species include CFl, CO2, FI2O and FI2 [160]. These molecules are probed by Raman spectroscopy to detenuine the temperature profile and species concentration m various combustion processes. [Pg.1215]

Infrared spectroscopy can also be carried out in molecular beams. The primary advantages of beam spectroscopy are tliat it dispenses almost entirely witli monomer absorjitions tliat overlap regions of interest, and tliat tlie complexes are... [Pg.2442]

Advantages of PT-IR, /. Chem. Educ. 1987, 64, A269-A271. Perkins, W. E. Pourier Transform Infrared Spectroscopy Part 111. [Pg.458]

The most widely used techniques for surface analysis are Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), Raman and infrared spectroscopy, and contact angle measurement. Some of these techniques have the ability to determine the composition of the outermost atomic layers, although each technique possesses its own special advantages and disadvantages. [Pg.517]

The three most commonly applied external reflectance techniques can be considered in terms of the means employed to overcome the sensitivity problem. Both electrically modulated infrared spectroscopy (EMIRS) and in situ FTIR use potential modulation while polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) takes advantage of the surface selection rule to enhance surface sensitivity. [Pg.103]

Near-infrared Spectroscopy. Near-infrared spectroscopy (NIRS) uses that part of the electromagnetic spectrum between the visible and the infrared. This region has the advantage that the instrumentation is nearest to visible instrumentation. Signals in the near-infrared come not from the fundamental vibrations of molecules but from overtones. As... [Pg.21]

A great advantage of infrared spectroscopy is that the technique can be used to study catalysts in situ. Several cells for in situ investigations have been described in the literature [4, 5]. The critical point is the construction of infrared-transparent windows that withstand high temperatures and pressures. [Pg.224]

Fourier transform spectroscopy technology is widely used in infrared spectroscopy. A spectrum that formerly required 15 min to obtain on a continuous wave instrument can be obtained in a few seconds on an FT-IR. This greatly increases research and analytical productivity. In addition to increased productivity, the FT-IR instrument can use a concept called Fleggetts Advantage where the entire spectrum is determined in the same time it takes a continuous wave (CW) device to measure a small fraction of the spectrum. Therefore many spectra can be obtained in the same time as one CW spectrum. If these spectra are summed, the signal-to-noise ratio, S/N can be greatly increased. Finally, because of the inherent computer-based nature of the FT-IR system, databases of infrared spectra are easily searched for matching or similar compounds. [Pg.150]

It is important to appreciate that Raman shifts are, in theory, independent of the wavelength of the incident beam, and only depend on the nature of the sample, although other factors (such as the absorbance of the sample) might make some frequencies more useful than others in certain circumstances. For many materials, the Raman and infrared spectra can often contain the same information, but there are a significant number of cases, in which infrared inactive vibrational modes are important, where the Raman spectrum contains complementary information. One big advantage of Raman spectroscopy is that water is not Raman active, and is, therefore, transparent in Raman spectra (unlike in infrared spectroscopy, where water absorption often dominates the spectrum). This means that aqueous samples can be investigated by Raman spectroscopy. [Pg.85]

The principal reasons for choosing Fourier transform infrared spectroscopy are first, that these instruments record all wavelengths simultaneously and thus operate with maximum efficiency and, second, that Fourier transform infrared spectroscopy spectrometers have a more convenient optical geometry than do dispersive infrared instruments. These two facts lead to the following advantages. [Pg.31]

Therefore, for infrared spectroscopic methods, the total petroleum hydrocarbons comprise any chemicals extracted by a solvent that are not removed by silica gel and can be detected by infrared spectroscopy at a specified wavelength. The primary advantage of the infrared-based methods is that they are simple and rapid. Detection limits (e.g., for EPA 418.1) are approximately 1 mg/L in water and 10 mg/kg in soil. However, the infrared method(s) often suffer from poor accuracy and precision, especially for heterogeneous soil samples. Also, the infrared methods give no information on the type of fuel present in the sample, and there is little, often no information about the presence or absence of toxic molecules, and no specific information about potential risk associated with the contamination. [Pg.195]

More sophisticated detection methods for gas chromatography are also employed in the analysis of hydrocarbons gas chromatography-mass spectrometry (EPA 8270C) and gas chromatography-Fourier transform infrared spectroscopy (EPA 8410). These procedures have a significant advantage in providing better characterization of the contaminants and thus are of particular use where some environmental modification of the hydrocarbons has taken place subsequent to soil deposition. [Pg.228]

Finally, in the field of full-spectrum NIRS methods, Fourier transform near-infrared (FTIR) analyzers are included (Figure 5.5). FTIR techniques are predominant in mid-infrared spectroscopy because there are clear and absolute advantages for the FTIR analyzer in the mid-infrared compared with any other available technology. This arises because of the low power output of mid-infrared sources and the low specific detectivity... [Pg.111]

It is a commonplace that FTIR-based analyzers are the predominant technology for mid-infrared applications. This arises from a unique tie-in between the inherent advantages of the FTIR method and serious limitations in the mid-infrared range. The most serious problem for mid-infrared spectroscopy is the very low emissivity of mid-infrared sources combined with the low detectivity of mid-infrared thermal detectors. [Pg.129]

Infrared Spectroscopy. The use of IR (9.10.11.12) and FTIR (3.4) for coal mineralogy has been reported. Painter and coworkers (3) demonstrated that FTIR can provide a virtually complete analysis. Painter, Brown and Elliott (4), and others (9.10.11) discuss sample preparation, reference minerals, and data analysis. The advantages of IR are 1) high sensitivity to molecular structure, 2) unequivocal identification of a number of minerals, 3) small sample size (a few milligrams), and 4) rapid analysis time (once LTA is available). Disadvantages include 1) reliance on reference minerals, 2) requires careful attention to sample preparation, and 3) limited selectivity (discrimination among similar minerals). [Pg.48]


See other pages where Infrared spectroscopy, advantages is mentioned: [Pg.395]    [Pg.1143]    [Pg.315]    [Pg.11]    [Pg.353]    [Pg.745]    [Pg.59]    [Pg.110]    [Pg.1143]    [Pg.260]    [Pg.40]    [Pg.316]    [Pg.734]    [Pg.41]    [Pg.147]    [Pg.131]    [Pg.94]    [Pg.106]    [Pg.217]    [Pg.243]    [Pg.305]    [Pg.323]    [Pg.302]    [Pg.31]    [Pg.164]    [Pg.2]    [Pg.6]    [Pg.30]    [Pg.38]    [Pg.162]    [Pg.601]    [Pg.70]   
See also in sourсe #XX -- [ Pg.229 ]




SEARCH



Fourier-transform infrared spectroscopy Fellgett advantage

Fourier-transform infrared spectroscopy advantages

Fourier-transform infrared spectroscopy multiplex advantage

Infrared advantages

Infrared spectroscopy Fellgett advantage

Infrared spectroscopy precision advantage

Infrared spectroscopy throughput advantage

Near-infrared spectroscopy advantages

The Advantages and Disadvantages of Infrared Spectroscopy

© 2024 chempedia.info