Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared results: vibrational frequencies

Table 5 Calculated and experimental infrared-active vibrational frequencies in cm for Pa if-CsHf)2- LDA is a local-density approximation and PW91 is a generalized-gradient approximations. The results are all taken from ref 32... Table 5 Calculated and experimental infrared-active vibrational frequencies in cm for Pa if-CsHf)2- LDA is a local-density approximation and PW91 is a generalized-gradient approximations. The results are all taken from ref 32...
To perform a vibrational analysis, choose Vibrationson the Compute menu to invoke a vibrational analysis calculation, and then choose Vibrational Dectrum to visualize the results. The Vibrational Spectrum dialog box displays all vibrational frequencies and a simulated infrared spectrum. You can zoom and pan in the spectrum and pick normal modes for display, using vectors (using the Rendering dialog box from Display/Rendering menu item) and/or an im ation. [Pg.124]

Much earlier information on the structure of diazonium ions than that derived from X-ray analyses (but still useful today) was obtained by infrared spectroscopy. The pioneers in the application of this technique to diazonium and diazo compounds were Le Fevre and his school, who provided the first IR evidence for the triple bonds by identifying the characteristic stretching vibration band at 2260 cm-1 (Aroney et al., 1955 see also Whetsel et al., 1956). Its frequency lies between the Raman frequency of dinitrogen (2330 cm-1, Schrotter, 1970) and the stretching vibration frequency of the C = N group in benzonitrile (2255 cm-1, Aroney et al., 1955). In substituted benzenediazonium salts the frequency of the NN stretching vibration follows Hammett op relationships. Electron donor substituents reduce the frequency, whereas acceptor substituents increase it. The 4-dimethylamino group, for example, shifts it by 103 cm-1 to 2177 cm-1 (Nuttall et al., 1961). This result supports the hypothesis that... [Pg.75]

Florian and Johnson50 calculated vibrational frequencies in isolated formamide using the DFT calculations at the LDA (SVWN) and post-LDA (B88/LYP) levels. The DFT frequencies were compared with the ones derived from the Hartree-Fock and MP2 calculations, and from experiment. The authors found that the DFT(B88/LYP) frequencies were more in line with experiment then the MP2 ones. The DFT(SVWN) calculations led to geometry, force constants, and infrared spectra fully comparable to the MP2 results. The equilibrium geometry and vibrational frequencies of formamide were also the subject of studies by Andzelm et al.51. It was found that the DFT(B88/P86) calculations led to frequencies in a better agreement with experiment than those obtained from the CISD calculations. [Pg.91]

The second problem of interest is to find normal vibrational frequencies and integral intensities for spectral lines that are active in infrared absorption spectra. In this instance, we can consider the molecular orientations, to be already specified. Further, it is of no significance whether the orientational structure eRj results from energy minimization for static dipole-dipole interactions or from the competition of any other interactions (e.g. adsorption potentials). For non-polar molecules (iij = 0), the vectors eRy describe dipole moment orientations for dipole transitions. [Pg.55]

A set of SER spectra for adsorbed azide on silver, obtained for the same surface and solution conditions and for a similar sequence of electrode potentials as for the PDIR spectra in Figure 1, is shown in Figure 2. (See the figure caption and reference 7 for experimental details.) Inspection of these SER spectra in comparison with the PDIR results illustrate some characteristic differences in the information provided by the two techniques. Most prominently, in addition to the Nj" j/as band around 2060 cm"1, the former spectra exhibit three other features at lower frequencies attributable to adsorbed azide vibrations. By analogy with bulk-phase spectra for free and coordinated azide (15), the 1330 cm"1 SERS band is attributed to the N-N-N symmetric stretch, vt (2). The observation of both i/a and j/aa features in the SER spectra differs from the surface infrared results in that only the v band is obtained in the latter (2). The appearance of the vn band in SERS is of interest since this feature is symmetry forbidden in the solution azide Raman spectrum. [Pg.308]

Vibrational spectroscopy can help us escape from this predicament due to the exquisite sensitivity of vibrational frequencies, particularly of the OH stretch, to local molecular environments. Thus, very roughly, one can think of the infrared or Raman spectrum of liquid water as reflecting the distribution of vibrational frequencies sampled by the ensemble of molecules, which reflects the distribution of local molecular environments. This picture is oversimplified, in part as a result of the phenomenon of motional narrowing The vibrational frequencies fluctuate in time (as local molecular environments rearrange), which causes the line shape to be narrower than the distribution of frequencies [3]. Thus in principle, in addition to information about liquid structure, one can obtain information about molecular dynamics from vibrational line shapes. In practice, however, it is often hard to extract this information. Recent and important advances in ultrafast vibrational spectroscopy provide much more useful methods for probing dynamic frequency fluctuations, a process often referred to as spectral diffusion. Ultrafast vibrational spectroscopy of water has also been used to probe molecular rotation and vibrational energy relaxation. The latter process, while fundamental and important, will not be discussed in this chapter, but instead will be covered in a separate review [4],... [Pg.60]

CO is an excellent probe molecule for probing the electronic environment of metals atoms either supported or exchanged in zeolites. Hadjiivanov and Vayssilov have published an extensive review of the characteristics and use of CO as a probe molecule for infrared spectroscopy [80]. The oxidation and coordination state of the metal atoms can be determined by the spectral features, stability and other characteristics of the metal-carbonyls that are formed. Depending on the electronic environment of the metal atoms, the vibrational frequency of the C-O bond can shift. When a CO molecule reacts with a metal atom, the metal can back-donate electron density into the anti-bonding pi-orbital. This weakens the C-O bond which results in a shift to lower vibrational frequencies (bathochromic) compared to the unperturbed gas phase CO value (2143 cm ) [62]. These carbonyls form and are stable at room temperature and low CO partial pressures, so low temperature capabilities are not necessary to make these measurements. [Pg.138]

If carried out with a good basis set [6-31G(d) or better], the benefits of MPPT, carried out to second order (MP2), include moderate improvements in structures and relative energies and often significant improvement in the values of secondary properties such as dipole moments, vibrational frequencies, infrared and Raman absorption intensities, and NMR chemical shifts. Modem quantum chemistry codes such as the GAUSSIAN package incorporate analytical calculation of MP2 forces and force constants. Although it adds substantially to the time required to carry out the calculations, the results of MPPT usually make the extra effort worthwhile. [Pg.31]

Microwave spectrometer, 219-221 Microwave spectroscopy, 130, 219-231 compilations of results of, 231 dipole-moment measurements in, 225 experimental procedures in, 219-221 frequency measurements in, 220 and molecular structure, 221-225 and rotational barriers, 226-228 and vibrational frequencies, 225-226 Mid infrared, 261 MINDO method, 71,76 and force constants, 245 and ionization potentials, 318-319 Minimal basis set, 65 Minor, 14 Modal matrix, 106 Molecular orbitals for diatomics, 58 and group theory, 418-427 for polyatomics, 66... [Pg.247]

The resulting ring strain is also reflected in an increase in the C—H vibrational frequency and a decrease in the N—H vibrational frequency aa determined by measurement of the infrared and Kaman... [Pg.536]

Almost all infrared work makes use of absorption techniques in which radiation from a source emitting all infrared frequencies is passed through a sample of the material to be studied. When the frequency of this radiation is the same as a vibrational frequency of the molecule, the molecule may be vibrationally excited this results in loss of energy from the radiation and gives rise to an absorption band. The spectrum of a polyatomic molecule generally consists of several such bands arising from different vibrational motions of the molecule. This experiment involves diatomic molecules, which have only one vibrational mode. [Pg.416]

In the infrared spectrum of polyethylene (Fig. 4.1-2A) this band is split into a doublet at 720 and 731 cm This factor group splitting (Fig. 2.6-1 and Sec. 2.7.6.4) is a result of the interaction between the molecules in crystalline lattice areas. It may be used to investigate the crystallinity of polymers (Drushel and Iddings, 1963 Luongo, 1964). Polyethylene has a unit cell of the factor group Dih (compare Secs. 2.7.5 and 2.7.6.3) which contains a -CH2-CH2- section of two neighboring chains. Each of these sections has a center of inversion in the middle of the C-C bond (Fig. 4.1-3). Therefore the rule of mutual exclusion (Sec. 2.7.3.4) becomes effective The vibrations of the C-C bonds cannot be infrared active and further there are no coincidences of vibrational frequencies in the infrared and Raman spectrum of linear polyethylene. [Pg.194]

Practical problems associated with infrared dichroism measurements include the requirement of a band absorbance lower than 0.7 in the general case, in order to use the Beer-Lambert law in addition infrared bands should be sufficently well assigned and free of overlap with other bands. The specificity of infrared absorption bands to particular chemical functional groups makes infrared dichroism especially attractive for a detailed study of submolecular orientations of materials such as polymers. For instance, information on the orientation of both crystalline and amorphous phases in semicrystalline polymers may be obtained if absorption bands specific of each phase can be found. Polarized infrared spectroscopy can also yield detailed information on the orientational behavior of each component of a pol3mier blend or of the different chemical sequences of a copoljnner. Infrar dichroism studies do not require any chain labelling but owing to the mass dependence of the vibrational frequency, pronounced shifts result upon isotopic substitution. It is therefore possible to study binary mixtures of deuterated and normal polymers as well as isotopically-labelled block copolymers and thus obtain information simultaneously on the two t3q>es of units. [Pg.39]


See other pages where Infrared results: vibrational frequencies is mentioned: [Pg.114]    [Pg.19]    [Pg.404]    [Pg.351]    [Pg.529]    [Pg.161]    [Pg.57]    [Pg.90]    [Pg.34]    [Pg.277]    [Pg.134]    [Pg.7]    [Pg.277]    [Pg.45]    [Pg.58]    [Pg.367]    [Pg.60]    [Pg.135]    [Pg.16]    [Pg.291]    [Pg.22]    [Pg.514]    [Pg.42]    [Pg.228]    [Pg.199]    [Pg.177]    [Pg.302]    [Pg.252]    [Pg.272]    [Pg.160]    [Pg.254]    [Pg.77]    [Pg.97]    [Pg.6330]    [Pg.382]    [Pg.81]   


SEARCH



Frequency Results

Infrared frequencies

Vibration frequency

Vibrational frequencies

Vibrational infrared

© 2024 chempedia.info