Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy polarized

Infrared Spectroscopy. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) data were collected using a Nicolet MAGNA-IR 860 Fourier transform spectrometer equipped with a liquid nitrogen-cooled mercury-cadmium-telluride (MCT) detector and a Hinds Instruments PEM-90 photoelastic modulator. The p-polarized light was incident at 80° from the surface normal. The spectra were collected for 1000 scans at a spectral resolution of 4 cm . ... [Pg.277]

Infrared Spectroscopy. The infrared spectroscopy of adsorbates has been studied for many years, especially for chemisorbed species (see Section XVIII-2C). In the case of physisorption, where the molecule remains intact, one is interested in how the molecular symmetry is altered on adsorption. Perhaps the conceptually simplest case is that of H2 on NaCl(lOO). Being homo-polar, Ha by itself has no allowed vibrational absorption (except for some weak collision-induced transitions) but when adsorbed, the reduced symmetry allows a vibrational spectrum to be observed. Fig. XVII-16 shows the infrared spectrum at 30 K for various degrees of monolayer coverage [96] (the adsorption is Langmuirian with half-coverage at about 10 atm). The bands labeled sf are for transitions of H2 on a smooth face and are from the 7 = 0 and J = 1 rotational states Q /fR) is assigned as a combination band. The bands labeled... [Pg.634]

The role of specific interactions in the plasticization of PVC has been proposed from work on specific interactions of esters in solvents (eg, hydrogenated chlorocarbons) (13), work on blends of polyesters with PVC (14—19), and work on plasticized PVC itself (20—23). Modes of iateraction between the carbonyl functionaHty of the plasticizer ester or polyester were proposed, mostly on the basis of results from Fourier transform infrared spectroscopy (ftir). Shifts in the absorption frequency of the carbonyl group of the plasticizer ester to lower wave number, indicative of a reduction in polarity (ie, some iateraction between this functionaHty and the polymer) have been reported (20—22). Work performed with dibutyl phthalate (22) suggests an optimum concentration at which such iateractions are maximized. Spectral shifts are in the range 3—8 cm . Similar shifts have also been reported in blends of PVC with polyesters (14—20), again showing a concentration dependence of the shift to lower wave number of the ester carbonyl absorption frequency. [Pg.124]

Novotny et al. [41] used p-polarized reflection and modulated polarization infrared spectroscopy to examine the conformation of 1 -1,000 nm thick liquid polyperfluoropropy-lene oxide (PPFPO) on various solid surfaces, such as gold, silver, and silica surfaces. They found that the peak frequencies and relative intensities in the vibration spectra from thin polymer films were different from those from the bulk, suggesting that the molecular arrangement in the polymer hlms deviated from the bulk conformation. A two-layer model has been proposed where the hlms are composed of interfacial and bulk layers. The interfacial layer, with a thickness of 1-2 monolayers, has the molecular chains preferentially extended along the surface while the second layer above exhibits a normal bulk polymer conformation. [Pg.226]

The three most commonly applied external reflectance techniques can be considered in terms of the means employed to overcome the sensitivity problem. Both electrically modulated infrared spectroscopy (EMIRS) and in situ FTIR use potential modulation while polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) takes advantage of the surface selection rule to enhance surface sensitivity. [Pg.103]

The dipole and polarization selection rules of microwave and infrared spectroscopy place a restriction on the utility of these techniques in the study of molecular structure. However, there are complementary techniques that can be used to obtain rotational and vibrational spectrum for many other molecules as well. The most useful is Raman spectroscopy. [Pg.283]

Enantiomers have identical chemical and physical properties in the absence of an external chiral influence. This means that 2 and 3 have the same melting point, solubility, chromatographic retention time, infrared spectroscopy (IR), and nuclear magnetic resonance (NMR) spectra. However, there is one property in which chiral compounds differ from achiral compounds and in which enantiomers differ from each other. This property is the direction in which they rotate plane-polarized light, and this is called optical activity or optical rotation. Optical rotation can be interpreted as the outcome of interaction between an enantiomeric compound and polarized light. Thus, enantiomer 3, which rotates plane-polarized light in a clockwise direction, is described as (+)-lactic acid, while enantiomer 2, which has an equal and opposite rotation under the same conditions, is described as (—)-lactic acid. [Pg.5]

Asakura, T., Kuzuhara, A., Tabeta, R., and Saito, H. (1985). Conformation characteriz-tion of Bombyx mod silk fibroin in the solid state by high-frequency 13C cross polarization-magic angle spinning NMR, x-ray diffraction, and infrared spectroscopy. Macromolecules 18, 1841-1845. [Pg.43]

One of the major obstacles to investigating ultrathin polymer films is the small amount of detectable sample material and, as a result, high instrument sensitivity is crucial. Although polarized Fourier Transform Infrared Spectroscopy (13.141 has... [Pg.350]

This restilt was confimed by other groupsi2.i3, using Fourier transform infrared spectroscopy. Kunimatsu and Kita made further progress using polarization modulation to enable quantitative measurements and showed... [Pg.113]

An important consequence of the presence of the metal surface is the so-called infrared selection rule. If the metal is a good conductor the electric field parallel to the surface is screened out and hence it is only the p-component (normal to the surface) of the external field that is able to excite vibrational modes. In other words, it is only possible to excite a vibrational mode that has a nonvanishing component of its dynamical dipole moment normal to the surface. This has the important implication that one can obtain information by infrared spectroscopy about the orientation of a molecule and definitely decide if a mode has its dynamical dipole moment parallel with the surface (and hence is undetectable in the infrared spectra) or not. This strong polarization dependence must also be considered if one wishes to use Eq. (1) as an independent way of determining ft. It is necessary to put a polarizer in the incident beam and use optically passive components (which means polycrystalline windows and mirror optics) to avoid serious errors. With these precautions we have obtained pretty good agreement for the value of n determined from Eq. (1) and by independent means as will be discussed in section 3.2. [Pg.3]

Both Raman and infrared spectroscopy provide qualitative and quantitative information about ehemieal species through the interaetion of radiation with molecular vibrations. Raman spectroscopy complements infrared spectroscopy, particularly for the study of non-polar bonds and certain functional groups. It is often used as an additional technique for elueidating the molecular structure and symmetry of a eompound. Raman spectroseopy also provides facile access to the low frequency region (less than 400 cm Raman shift), an area that is more difficult for infrared speetroseopy. [Pg.13]

The differences in selection rules between Raman and infrared spectroscopy define the ideal situations for each. Raman spectroscopy performs well on compounds with double or triple bonds, different isomers, sulfur-containing and symmetric species. The Raman spectrum of water is extremely weak so direct measurements of aqueous systems are easy to do. Polar solvents also typically have weak Raman spectra, enabling direct measurement of samples in these solvents. Some rough rules to predict the relative strength of Raman intensity from certain vibrations are [7] ... [Pg.197]

W.L. Yoon, N.C. North, R.D. Jee and A.C. Moffat, Apphcation of a polar qnahflcation system in the near infrared identification and qualification of raw pharmaceutical excipients. In Davies, A.M.C. and Giangiacomo, R. (eds). Near Infrared Spectroscopy, Proceedings of the International Conference, 9th, Verona, Italy, June 13-18, 1999, NIR Publications, Chichester, UK, pp. 547-550, 2000. [Pg.488]

Probing Metalloproteins Electronic absorption spectroscopy of copper proteins, 226, 1 electronic absorption spectroscopy of nonheme iron proteins, 226, 33 cobalt as probe and label of proteins, 226, 52 biochemical and spectroscopic probes of mercury(ii) coordination environments in proteins, 226, 71 low-temperature optical spectroscopy metalloprotein structure and dynamics, 226, 97 nanosecond transient absorption spectroscopy, 226, 119 nanosecond time-resolved absorption and polarization dichroism spectroscopies, 226, 147 real-time spectroscopic techniques for probing conformational dynamics of heme proteins, 226, 177 variable-temperature magnetic circular dichroism, 226, 199 linear dichroism, 226, 232 infrared spectroscopy, 226, 259 Fourier transform infrared spectroscopy, 226, 289 infrared circular dichroism, 226, 306 Raman and resonance Raman spectroscopy, 226, 319 protein structure from ultraviolet resonance Raman spectroscopy, 226, 374 single-crystal micro-Raman spectroscopy, 226, 397 nanosecond time-resolved resonance Raman spectroscopy, 226, 409 techniques for obtaining resonance Raman spectra of metalloproteins, 226, 431 Raman optical activity, 226, 470 surface-enhanced resonance Raman scattering, 226, 482 luminescence... [Pg.457]

Polarization modulation reflection absorption infrared spectroscopy (PM-RAIRS) was employed to follow the reaction of CO, C2H4 and CO/C2H4 with microcrystalline ]Pd(Me)(OTf)(dppp)] deposited onto a gold coated wafer. Single insertion steps were observed by alternately exposing the catalyst precursor to low CO (500-333 mbar) and ethene (333 mbar) pressures (Figure 7.12). [Pg.285]

The details in the CO response continue to be the subject of many discussions and a full explanation will need further studies. These can include spectroscopy studies such as diffuse reflectance transform infrared spectroscopy (DRIFT), which can be performed under realistic conditions [43,44], and theoretical modeling [45]. However it seems likely that not only hydrogen gives rise to charged or polarized complexes on the insulator surface. Equation (2.3) may now be written as... [Pg.34]

Infrared spectroscopy has been an important part of peptide structural analysis for 50 years now. From a rather basic beginning, applications have blossomed to encompass secondary structure analysis, polarization phenomena, membrane conformation, and orientation, and have extended to time-dependent conformational folding mechanisms. Questions have evolved from basic polymer chemistry to issues centered on peptides involved in socially... [Pg.732]

Hamelin [47] has shown that specific adsorption of OH ions increases in the following order Au(lll) < Au(lOO) < Au(311). Chen and Lipkowski [48] have applied chronocoulometry and subtractively normalized interfacial Fourier transform infrared spectroscopy to study adsorption of hydroxide ions on Au(lll) electrode. This process proceeded in three steps. Bonding of OH with gold atoms that is quite polar at negatively charged surface becomes less polar at positively... [Pg.847]

The final product isolated or the position of the equilibrium in a particular solvent depends on the length of the side chain, the ring size of the macrocycle, and the polarity of the solvent chosen. Infrared spectroscopy has been extensively used to study this aspect. [Pg.212]


See other pages where Infrared spectroscopy polarized is mentioned: [Pg.484]    [Pg.535]    [Pg.544]    [Pg.484]    [Pg.535]    [Pg.544]    [Pg.1264]    [Pg.1948]    [Pg.158]    [Pg.140]    [Pg.259]    [Pg.249]    [Pg.34]    [Pg.194]    [Pg.151]    [Pg.10]    [Pg.108]    [Pg.110]    [Pg.289]    [Pg.161]    [Pg.398]    [Pg.196]    [Pg.323]    [Pg.338]    [Pg.51]    [Pg.231]    [Pg.139]    [Pg.123]    [Pg.264]    [Pg.138]    [Pg.596]    [Pg.730]    [Pg.476]   
See also in sourсe #XX -- [ Pg.129 ]




SEARCH



Infrared Spectroscopy of Polar Solvents

Infrared polarized

Polarization modulated infrared reflection absorption spectroscopy

Polarization modulation infrared reflection absorption spectroscopy

Polarization spectroscopy

Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS)

Polarized attenuated total reflection infrared spectroscopy

Polarized infrared absorption spectroscopy

Polarizers, infrared

© 2024 chempedia.info