Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Industrial processes preparation

It should be emphasised that whereas the interaction of a sodium salt and an acid chloride is a convenient general laboratory method for preparing all classes of anhydrides, acetic anhydride is prepared on a large scale by other and cheaper methods. Industrial processes are based on reactions indicated by the equations ... [Pg.116]

The industrial process for preparing the reagent usually permits a little hydrolysis to occur, and the product may contain a little free calcium hydroxide or basic chloride. It cannot therefore be employed for drying acids or acidic liquids. Calcium chloride combines with alcohols, phenols, amines, amino-acids, amides, ketones, and some aldehydes and esters, and thus cannot be used with these classes of compounds. [Pg.140]

The conjugated diene 1 3 butadiene is used m the manufacture of synthetic rubber and IS prepared on an industrial scale m vast quantities Production m the United States is currently 4 X 10 Ib/year One industrial process is similar to that used for the prepara tion of ethylene In the presence of a suitable catalyst butane undergoes thermal dehy drogenation to yield 1 3 butadiene... [Pg.404]

The preparation and structure determination of ferrocene marked the beginning of metallocene chemistry Metallocenes are organometallic compounds that bear cyclo pentadiemde ligands A large number are known even some m which uranium is the metal Metallocenes are not only stucturally interesting but many of them have useful applications as catalysts for industrial processes Zirconium based metallocenes for example are the most widely used catalysts for Ziegler-Natta polymerization of alkenes We 11 have more to say about them m Section 14 15... [Pg.610]

It is common practice in the siHcone mbber industry to prepare specific or custom mixtures of polymer, fillers, and cure catalysts for particular appHcations. The number of potential combinations is enormous. In general, the mixture is selected to achieve some special operating or processing requirement, and the formulations are classified accordingly. Table 6 Hsts some of the commercially important types. [Pg.53]

Acid-Gatalyzed Synthesis. The acid-catalysed reaction of alkenes with hydrogen sulfide to prepare thiols can be accompHshed using a strong acid (sulfuric or phosphoric acid) catalyst. Thiols can also be prepared continuously over a variety of soHd acid catalysts, such as seoHtes, sulfonic acid-containing resin catalysts, or aluminas (22). The continuous process is utilised commercially to manufacture the more important thiols (23,24). The acid-catalysed reaction is commonly classed as a Markownikoff addition. Examples of two important industrial processes are 2-methyl-2-propanethiol and 2-propanethiol, given in equations 1 and 2, respectively. [Pg.10]

Processes that are essentially modifications of laboratory methods and that allow operation on a larger scale are used for commercial preparation of vinyhdene chloride polymers. The intended use dictates the polymer characteristics and, to some extent, the method of manufacture. Emulsion polymerization and suspension polymerization are the preferred industrial processes. Either process is carried out in a closed, stirred reactor, which should be glass-lined and jacketed for heating and cooling. The reactor must be purged of oxygen, and the water and monomer must be free of metallic impurities to prevent an adverse effect on the thermal stabiUty of the polymer. [Pg.438]

Sodium Tetrahydroborate, Na[BH ]. This air-stable white powder, commonly referred to as sodium borohydride, is the most widely commercialized boron hydride material. It is used in a variety of industrial processes including bleaching of paper pulp and clays, preparation and purification of organic chemicals and pharmaceuticals, textile dye reduction, recovery of valuable metals, wastewater treatment, and production of dithionite compounds. Sodium borohydride is produced in the United States by Morton International, Inc., the Alfa Division of Johnson Matthey, Inc., and Covan Limited, with Morton International supplying about 75% of market. More than six million pounds of this material suppHed as powder, pellets, and aqueous solution, were produced in 1990. [Pg.253]

I am a physicist who switched to nuclear engineering for my Ph D. My introduction to PSA was as an original participant in the Reactor Safety Study in 1972. Material for this book was first gathered in 1974 for a workshop on what to expect in WASH-1400 (the results of the Reactor Safety Study). Materials were gathered over the years for EPRI, Savannah River Laboratory, and other workshops. A culmination was in 1988 with "Probabilistic Risk Assessment in the Nuclear Power Industry" with Robert Hall as coauthor. This book updates these materials and adds material on PSA in the chemical process industry. I prepared the material for printing using a word processor... [Pg.542]

One of the industrial processes for the preparation of phenol, discussed in Section 24.6, includes an acid-catalyzed rearrangement of cumene hydroperoxide as a key step. This reaction proceeds by way of an intermediate hemiacetal ... [Pg.1023]

Hydroformylation (Section 17.5) An industrial process for preparing aldehydes (RCH2CH2CH=0) by the reaction of terminal alkenes (RCH=CH2) with carbon monoxide. [Pg.1286]

BF3 is used extensively as a catalyst in various industrial processes (p. 199) and can be prepared on a large scale by the fluorination of boric oxide or borates with fluorspar and concentrated H2SO4 ... [Pg.196]

Base metals frequently are used in nonsupported form, but noble metals rarely are, except in laboratory preparations. Supporting the noble metals makes a more efficient catalyst on a weight of metal basis and aids in recovery of the metal. Neither of these factors is of much importance in experimental work, but in industrial processing both have significant impact on economics. [Pg.4]

The potential durability of a coating system can be realized only if it is applied to a suitably prepared surface, in the correct manner under correct conditions. Painting differs from any other industrial processes in that it is not susceptible to operator abuse or adverse environmental influences throughout all stages of the work. [Pg.135]

The products of this electrolysis have a variety of uses. Chlorine is used to purify drinking water large quantities of it are consumed in making plastics such as polyvinyl chloride (PVC). Hydrogen, prepared in this and many other industrial processes, is used chiefly in the synthesis of ammonia (Chapter 12). Sodium hydroxide (lye), obtained on evaporation of the electrolyte, is used in processing pulp and paper, in the purification of aluminum ore, in the manufacture of glass and textiles, and for many other purposes. [Pg.499]

Historical. It was first prepd by the action of nitric acid (d 1.52 g/cc) on acetylene (Ref 5), and this is the basis for one industrial process for mfg TNMe (Refs 10, 29 35). This reaction was first examined on a large scale in Ger during WWII, where it was used to prepare TNMe and TeNMe for use as intermediates for the prepn of expls (Ref 18)... [Pg.96]

An intriguing influence of a cosolvent immiscible with water on the enantioselec-tivity of the enzyme-catalyzed hydrolysis was observed. It was proven that enzyme enantioselectivity is directly correlated with the cosolvent hydrophobicity. In the best example, for ethyl ether as cosolvent, the reaction proceeded with E = 55, and the target compound was obtained in 33% yield with 92.7% ee. This finding may be of great practical importance, particularly in industrial processes [24], since it will enable better optimization of enzyme-catalyzed processes. It is clear that, in future, immobilized enzymes, as heterogeneous catalysts, wiU be widely used in most industrial transformations, especially in the preparation of pharmaceuticals [25]. [Pg.101]


See other pages where Industrial processes preparation is mentioned: [Pg.850]    [Pg.850]    [Pg.163]    [Pg.106]    [Pg.69]    [Pg.148]    [Pg.319]    [Pg.208]    [Pg.505]    [Pg.457]    [Pg.349]    [Pg.260]    [Pg.410]    [Pg.324]    [Pg.396]    [Pg.240]    [Pg.452]    [Pg.470]    [Pg.514]    [Pg.394]    [Pg.45]    [Pg.212]    [Pg.323]    [Pg.129]    [Pg.442]    [Pg.146]    [Pg.221]    [Pg.306]    [Pg.311]    [Pg.1538]    [Pg.202]    [Pg.68]    [Pg.321]    [Pg.58]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Industrial membrane processing preparation

Industrial preparation

Preparation processes

Processing and Industrial Preparation

© 2024 chempedia.info