Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductively coupled plasma coil

Near the outlet from the torch, at the end of the concentric tubes, a radio high-frequency coil produces a rapidly oscillating electromagnetic field in the flowing gas. The applied high-frequency field couples inductively with the electric fields of the electrons and ions in the plasma, hence the name inductively coupled plasma or ICP. [Pg.395]

Recently it has been shown that rotating coiled columns (RCC) can be successfully applied to the dynamic (flow-through) fractionation of HM in soils and sediments [1]. Since the flow rate of the extracting reagents in the RCC equipment is very similar to the sampling rate that is used in the pneumatic nebulization in inductively coupled plasma atomic emission spectrometer (ICP-AES), on-line coupling of these devices without any additional system seems to be possible. [Pg.459]

Inductively coupled plasma Plasmas generated by application of radiofrequency power to a nonresonant inductive coil and maintained by an inductive electromagnetic field. Low-pressure ICP is a high-density plasma source. [Pg.10]

The temperature of the inductively coupled plasma varies with the distance from the load coil and according to the setting of the ICP rf power and nebulizer gas flow rate. A typical profile of the plasma gas temperature along the torch axis as a function of distance from the load coil is shown in Figure 2.4. With increasing distance from the load coil and with a reduction of ICP rf power the gas plasma temperature decreases. [Pg.30]

The cross-sectional view of an inductively coupled plasma burner in Figure 21-12 shows two turns of a 27- or 41-MHz induction coil wrapped around the upper opening of the quartz apparatus. High-purity Ar gas is fed through the plasma gas inlet. After a spark from a Tesla coil ionizes Ar, free electrons are accelerated by the radio-frequency field. Electrons collide with atoms and transfer their energy to the entire gas. maintaining a temperature of 6 000 to 10 000 K. The quartz torch is protected from overheating by Ar coolant gas. [Pg.460]

Figure 1 Schematic diagram of a typical commercial inductively coupled plasma mass spectrometry (ICP-MS) instrument (A) liquid sample, (B) peristaltic pump, (C) nebulizer, (D) spray chamber, (E) argon gas inlets, (F) load coil, (G) sampler cone, (H) skimmer cone, (I) ion lenses, (J) quadrupole, (K) electron multiplier detector, (L) computer. Figure 1 Schematic diagram of a typical commercial inductively coupled plasma mass spectrometry (ICP-MS) instrument (A) liquid sample, (B) peristaltic pump, (C) nebulizer, (D) spray chamber, (E) argon gas inlets, (F) load coil, (G) sampler cone, (H) skimmer cone, (I) ion lenses, (J) quadrupole, (K) electron multiplier detector, (L) computer.
This experiment presents the measurement of uranium with an inductively coupled plasma mass spectrometer (ICP-MS). In this system, a nebulizer converts the aqueous sample to an aerosol carried with argon gas. A torch heats the aerosol to vaporize and atomize the contents in quartz tubes. The atoms are ionized with an efficiency of about 95% by an RF (radiofrequency) coil. The plasma expands at a differentially-pumped air-vacuum interface into a vacuum chamber. The positive ions are focused and injected into the MS while the rest of the gas is removed by the pump. The ions are then accelerated, collected, and measured as a function of their mass. Losses at various stages, notably the vacuum interface, result in a detection efficiency of about 0.1 %, which is still sufficient to provide great sensitivity. The amounts of uranium isotopes in the sample are determined by comparisons to standards. Because different laboratories have different instruments, the instructor will provide instrument operating instmctions. Do not use the instrument until the instructor has checked the instrument and approved its use. [Pg.152]

An inductively coupled plasma source is made up of a hot flame produced by inductive coupling in which a solution of the sample is introduced as a spray [102-104], This source consists of three concentric quartz tubes through which streams of argon flow. As shown in Figure 1.44, a cooled induction coil surrounds the top of the largest tube. This coil is powered by an RF generator that produces between 1.5 and 2.5 kW at 27 or 40 MHz typically. The gas at atmospheric pressure that sustains the plasma is initially made... [Pg.69]

Lucic M. and Krivan V. (1999) Analysis of aluminium-based ceramic powders by electrothermal vaporization inductively coupled plasma atomic emission spectrometry using a tungsten coil and slurry sampling, Fresenius J Anal Chem 363 64-72. [Pg.322]

Dittrich K., Berndt H., Broekaert J. A. C., Schaldach G. and Tolg G. (1988) Comparative study of injection into a pneumatic nebuliser and tungsten coil electrothermal vaporisation for the determination of rare earth elements by inductively coupled plasma optical emission spectrometry, J Anal At Spectrom 3 1105—1110. [Pg.332]


See other pages where Inductively coupled plasma coil is mentioned: [Pg.435]    [Pg.317]    [Pg.247]    [Pg.2]    [Pg.300]    [Pg.29]    [Pg.308]    [Pg.36]    [Pg.620]    [Pg.83]    [Pg.29]    [Pg.30]    [Pg.35]    [Pg.122]    [Pg.474]    [Pg.358]    [Pg.470]    [Pg.45]    [Pg.300]    [Pg.114]    [Pg.30]    [Pg.376]    [Pg.29]    [Pg.30]    [Pg.122]    [Pg.474]    [Pg.262]    [Pg.317]    [Pg.63]    [Pg.175]    [Pg.94]    [Pg.275]    [Pg.734]    [Pg.24]    [Pg.45]    [Pg.845]    [Pg.1669]   


SEARCH



Coupled Plasma

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Inductively coupled coil

© 2024 chempedia.info