Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indium elements

The more metallic elements, indium and thallium, do not react in spite of the fact that In(OH)3 is amphoteric. [Pg.144]

In the absence of oxygen, gallium and indium are unaffected by water. Thallium, the most metallic element in Group III, reacts slowly with hot water and readily with steam to produce thallium(I) oxide, TI2O. [Pg.144]

The usual valence of indium is three, although monovalent and bivalent compounds of indium with oxygen, halogens, and Group 15 (VA) and 16 (VIA) elements ate well known. The lower valence compounds tend to disproportionate into the trivalent compound and indium metal the trivalent compounds ate stable. [Pg.81]

Indium also combines with nonmetaUic elements and with metalloids such as N, P, Sb, As, Te, and Se. Many of the latter compounds ate semiconducting as ate the oxide and sulfide. Indium antimonide [1312-41 -0], InSb indium arsenide [1303-11-3], In As and indium phosphide [22398-80-7], InP, ate the principal semiconducting compounds. These ate all prepared by direct combination of the highly purified elements at elevated temperature under controlled conditions. [Pg.81]

Mercury Telluride. Compounds of mercury with tellurium have gained importance as semiconductors with appHcations in infrared detection (9) and solar cells (10). The ratio of the components is varied, and other elements such as cadmium, zinc, and indium are added to modify the electronic characteristics. [Pg.114]

The platinum-group metals (PGMs), which consist of six elements in Groups 8— 10 (VIII) of the Periodic Table, are often found collectively in nature. They are mthenium, Ru rhodium, Rh and palladium, Pd, atomic numbers 44 to 46, and osmium. Os indium, Ir and platinum, Pt, atomic numbers 76 to 78. Corresponding members of each triad have similar properties, eg, palladium and platinum are both ductile metals and form active catalysts. Rhodium and iridium are both characterized by resistance to oxidation and chemical attack (see Platinum-GROUP metals, compounds). [Pg.162]

Modifications to Precipitates. Silicon is sometimes added to Al—Cu—Mg alloys to help nucleate S precipitates without the need for cold work prior to the elevated temperature aging treatments. Additions of elements such as tin [7440-31-5] Sn, cadmium [7440-43-9] Cd, and indium [7440-74-6] In, to Al—Cu alloys serve a similar purpose for 9 precipitates. Copper is often added to Al—Mg—Si alloys in the range of about 0.25% to 1.0% Cu to modify the metastable precursor to Mg2Si. The copper additions provide a substantial strength increase. When the copper addition is high, the quaternary Al CuMg Si Q-phase must be considered and dissolved during solution heat treatment. [Pg.118]

Spray Pyrolysis. In spray pyrolysis, a chemical solution is sprayed on a hot surface where it is pyrolyzed (decomposed) to give thin films of either elements or, more commonly, compounds (22). Eor example, to deposit CdS, a solution of CdCl plus NH2CSNH2 (thiourea) is sprayed on a hot surface. To deposit Iu202, InCl is dissolved in a solvent and sprayed on a hot surface in air. Materials that can be deposited by spray pyrolysis include electrically conductive tin—oxide and indium/tin oxide (ITO), CdS, Cu—InSe2, and CdSe. Spray pyrolysis is an inexpensive deposition process and can be used on large-area substrates. [Pg.528]

Zirconium oxide is used in the production of ceramic colors or stains for ceramic tile and sanitary wares. Zirconia and siHca are fired together to form zircon in the presence of small amounts of other elements which are trapped in the zircon lattice to form colors such as tin—vanadium yellow, praseodymium—zircon yellow [68187-15-5] vanadium—zircon blue [12067-91 -3] iron—zircon pink [68412-79-3] indium—vanadium orange (105—108). [Pg.432]

Metallic Antimonides. Numerous binary compounds of antimony with metallic elements are known. The most important of these are indium antimonide [1312-41 -0] InSb, gallium antimonide [12064-03-8] GaSb, and aluminum antimonide [25152-52-7] AlSb, which find extensive use as semiconductors. The alkali metal antimonides, such as lithium antimonide [12057-30-6] and sodium antimonide [12058-86-5] do not consist of simple ions. Rather, there is appreciable covalent bonding between the alkali metal and the Sb as well as between pairs of Na atoms. These compounds are useful for the preparation of organoantimony compounds, such as trimethylstibine [594-10-5] (CH2)2Sb, by reaction with an organohalogen compound. [Pg.202]

Hydrogen combines with many elements to form binary hydrides MH (or M H ). All the main-group elements except the noble gases and perhaps indium and thallium form hydrides, as do all the lanthanoids and actinoids that have been studied. Hydrides are also formed by the more electropositive transition elements, notably Sc, Y, La, Ac Ti, Zr, Hf and to a lesser... [Pg.64]

Indium (0.24 ppm) is similar in abundance to Sb and Cd, whereas T1 (0.7 ppm) is close to Tm and somewhat less abundant than Mo, W and Tb (1.2 ppm). Both elements are chalcophiles (p. 648), indium tending to associate with the similarly sized Zn in its sulfide minerals whilst the larger T1 tends to replace Pb in galena, PbS. Thallium(I) has a similar radius to Rb and so also concentrates with this element in the late magmatic potassium minerals such as feldspars and micas. [Pg.218]

Indium is now commercially recovered from the flue dusts emitted during the roasting of Zn/Pb sulfide ores and can also be recovered during the roasting of Fe and Cu sulfide ores. Before 1925 only 1 g of the element was available in the world but production now exceeds 80 000 000 g... [Pg.218]

Indium and antimony The electrodeposition of In on glassy carbon, tungsten, and nickel has been reported [26]. In basic chloroaluminates, elemental indium is... [Pg.300]

Of the elements commonly found in lead alloys, zinc and bismuth aggravate corrosion in most circumstances, while additions of copper, tellurium, antimony, nickel, silver, tin, arsenic and calcium may reduce corrosion resistance only slightly, or even improve it depending on the service conditions. Alloying elements that are of increasing importance are calcium especially in maintenance-free battery alloys and selenium, or sulphur combined with copper as nucleants in low antimony battery alloys. Other elements of interest are indium in anodesaluminium in batteries and selenium in chemical lead as a grain refiner ". [Pg.721]

Although aluminium is a base metal, it spontaneously forms a highly protective oxide film in most aqueous environments, i.e. it passivates. In consequence, it has a relatively noble corrosion potential and is then unable to act as an anode to steel. Low level mercury, indium or tin additions have been shown to be effective in lowering (i.e. making more negative) the potential of the aluminium they act as activators (depassivators). Each element has been shown to be more effective with the simultaneous addition of zinc . Zinc additions of up to 5% lower the anode operating potential, but above this level no benefit is gained . Below 0 9 7o zinc there is little influence on the performance of aluminium anodes . Table 10.10 lists a number of the more common commercial alloys. [Pg.143]

More than 1500 radioactive isotopes have been prepared in the laboratory. The number of such isotopes per element ranges from 1 (hydrogen and boron) to 34 (indium). They are all prepared by bombardment reactions in which a stable nucleus is converted to one... [Pg.514]

Unsubstituted bisphthalocyanines 2 are formed in the presence of several elements which exist in a stable oxidation state of + III or +IV such as titanium, zirconium, hafnium, indium and most of the lanthanide and actinide elements. [Pg.751]

The first catalytic study of Reaction 1 was published in 1902 by Sabatier and Senderens (1) who reported that nickel was an excellent catalyst. Since that time, the active catalysts were identified as the transition elements with unfilled 3d, 4d, and 5d orbitals iron, cobalt, nickel, ruthenium, rhenium, palladium, osmium, indium, and platinum, as well as some elements that can assume these configurations (e.g., silver). These are discussed later. For practical operation of this process,... [Pg.11]

Rare earth elements, with relatively high thermal neutron activation cross-sections, have been tested or considered as tagging species for this purpose. At GA (Ref 8), preliminary expts were conducted with 0.38 cal ammo using dysprosium (Dy) and europium (Eu) deposited on the wall of the cartridge case and in the gunpowder, and Dy, hoKnium (Ho) and indium (In) in the primer. [Pg.379]

Which element of each of the following pairs has the higher electron affinity (a) aluminum or indium (b) bismuth or antimony (c) silicon or lead ... [Pg.178]

Place the following elements in order of increasing electronegativity antimony, tin, selenium, indium. [Pg.212]


See other pages where Indium elements is mentioned: [Pg.106]    [Pg.202]    [Pg.67]    [Pg.429]    [Pg.106]    [Pg.202]    [Pg.67]    [Pg.429]    [Pg.215]    [Pg.140]    [Pg.158]    [Pg.116]    [Pg.79]    [Pg.80]    [Pg.210]    [Pg.55]    [Pg.391]    [Pg.424]    [Pg.424]    [Pg.434]    [Pg.434]    [Pg.474]    [Pg.61]    [Pg.198]    [Pg.221]    [Pg.241]    [Pg.452]    [Pg.145]    [Pg.85]    [Pg.452]    [Pg.251]   
See also in sourсe #XX -- [ Pg.78 ]

See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Indium elemental properties

Indium, elemental

Indium, elemental

Indium, elemental halogens

Indium, elemental reactions with

© 2024 chempedia.info