Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In transformation reaction

There has been considerable interest in the development of analytical procedures for hydroxyl radicals in view of their potentially adverse biological effects (Section 4.6.1.2), and their role in transformation reactions (Section 4.1.1). A number of procedures have been developed. [Pg.62]

Figure 1. Key reaction pathway in transformation reaction of sulfur containing compound derived from garlic... Figure 1. Key reaction pathway in transformation reaction of sulfur containing compound derived from garlic...
If A transforms to B by an antara-type process (a Mdbius four electron reaction), the phase would be preserved in the reaction and in the complete loop (An i p loop), and no conical intersection is possible for this case. In that case, the only way to equalize the energies of the ground and excited states, is along a trajectory that increases the separation between atoms in the molecule. Indeed, the two are computed to meet only at infinite interatomic distances, that is, upon dissociation [89]. [Pg.373]

In the reaction, compound A transforms to B the total number of electron pairs is preserved, but at least four electrons are assumed to change spin partners. [Pg.391]

Consideration of the reaction center or reaction site is of central importance in reaction searching. It does not suffice to specify the functional groups in the starting materials and in the products of a reaction when one is interested in a certain transformation. On top of that, one also has to specify that these functional groups shotfid participate directly in the reaction - that they should be part of the reaction center. [Pg.174]

The stereochemistry of reactions can also be treated by permutation group theory for reactions that involve the transformation of an sp carbon atom center into an sp carbon atom center, as in additions to C=C bonds, in elimination reactions, or in eIcctrocycHc reactions such as the one shown in Figure 3-21. Details have been published 3l]. [Pg.199]

Many of the species involved in the endogenous metabolism can undergo a multitude of transformations, have many reaction channels open, and by the same token, can be produced in many reactions. In other words, biochemical pathways represent a multi-dimensional space that has to be explored with novel techniques to appreciate and elucidate the full scope of this dynamic reaction system. [Pg.564]

In order to further cla.ssify these reactions, a search for reactions that transform ATP to ADP was made, resulting in 139 reactions 139 of the above 304 reactions involve the breaking of a P-0 bond in ATP, emphasizing the central importance of this bond breaking as a source of energy, An additional three reactions involve the transformation of GTP to GDP. As many reactions transferring a phosphate group... [Pg.566]

Reaction databases contain a wealth of reactions performed in the laboratory and published in the literature, i.c., in contrast to the transform libraries of synthesis design programs they contain raw, uninterpreted reaction information. In Figure 10,3-41 a schematic representation of a reaction in a reaction database is given. [Pg.583]

The usual base or acid catalyzed aldol addition or ester condensation reactions can only be applied as a useful synthetic reaction, if both carbonyl components are identical. Otherwise complicated mixtures of products are formed. If two different aldehydes or esters are to be combined, it is essential that one of the components is transformed quantitatively into an enol whereas the other component remains as a carbonyl compound in the reaction mixture. [Pg.55]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]

Metha.nol-to-Ga.soline, The most significant development in synthetic fuels technology since the discovery of the Fischer-Tropsch process is the Mobil methanol-to-gasoline (MTG) process (47—49). Methanol is efftcientiy transformed into C2—C q hydrocarbons in a reaction catalyzed by the synthetic zeoHte ZSM-5 (50—52). The MTG reaction path is presented in Figure 5 (47). The reaction sequence can be summarized as... [Pg.82]

Enzyme-Catalyzed Asymmetric Synthesis. The extent of kinetic resolution of racemates is determined by differences in the reaction rates for the two enantiomers. At the end of the reaction the faster reacting enantiomer is transformed, leaving the slower reacting enantiomer unchanged. It is apparent that the maximum product yield of any kinetic resolution caimot exceed 50%. [Pg.332]

Some weak electrophilic reagents, which are usually inert toward azoles, also react with quaternized azoles. Diazonium salts yield phenylhydrazones (Scheme 48) in a reaction analogous to the Japp-Klingemann transformation of /S-keto esters into phenylhydrazones in the dithiolylium series illustrated the product has bicyclic character. Cyanine dye preparations fall under this heading (see also Section 4.02.1.6.5). Monomethine cyanines are formed by reaction with an iodo quaternary salt, e.g. Scheme 49. Tri- and penta-methinecar-bocyanines (384 n = 1 and 2, respectively) are obtained by the reaction of two molecules of a quaternary salt with one molecule of ethyl orthoformate (384 n = 1) or/S-ethoxyacrolein acetal (384 n =2), respectively. [Pg.90]

The transformed variables describe the system composition with or without reaction and sum to unity as do Xi and yi. The condition for azeotropy becomes X, = Y,. Barbosa and Doherty have shown that phase and distillation diagrams constructed using the transformed composition coordinates have the same properties as phase and distillation region diagrams for nonreactive systems and similarly can be used to assist in design feasibility and operability studies [Chem Eng Sci, 43, 529, 1523, and 2377 (1988a,b,c)]. A residue curve map in transformed coordinates for the reactive system methanol-acetic acid-methyl acetate-water is shown in Fig. 13-76. Note that the nonreactive azeotrope between water and methyl acetate has disappeared, while the methyl acetate-methanol azeotrope remains intact. Only... [Pg.1320]

In the first century of "organic" chemistry much attention was given to the structures of carbogens and their transformations. Reactions were classified according to the types of substrates that underwent the chemical change (for example "aromatic substitution," "carbonyl addition," "halide displacement," "ester condensation"). Chemistry was taught and learned as transformations characteristic of a structural class (e.g. phenol, aldehyde) or structural subunit... [Pg.5]


See other pages where In transformation reaction is mentioned: [Pg.160]    [Pg.148]    [Pg.776]    [Pg.478]    [Pg.318]    [Pg.160]    [Pg.148]    [Pg.776]    [Pg.478]    [Pg.318]    [Pg.376]    [Pg.569]    [Pg.44]    [Pg.79]    [Pg.141]    [Pg.256]    [Pg.206]    [Pg.565]    [Pg.82]    [Pg.290]    [Pg.320]    [Pg.314]    [Pg.314]    [Pg.521]    [Pg.326]    [Pg.465]    [Pg.190]    [Pg.308]    [Pg.91]    [Pg.228]    [Pg.232]    [Pg.240]    [Pg.61]    [Pg.103]    [Pg.88]    [Pg.109]   
See also in sourсe #XX -- [ Pg.463 ]




SEARCH



Chemical Reaction Engineering in Biomass Transformation

Chemical Reaction and Phase Transformation Kinetics in Solids

Energy transformation in biochemical reactions and pathways

In transformations

Reaction transform

Transformation of Transition Metal Compounds in Reactions with Polymers

Transformation reaction

© 2024 chempedia.info