Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkene in addition

Various terminal alkenes reacted smoothly with 2-picoline under the same reaction conditions (Table 5.9). 1-Heptene and 1-octene could afford the expected branched products in high yields (92%) and enantioselectivity (93 7 er) (entries 1 and 2). In addition, alkenes bearing bulky substituents in close proximity to the C—C double bond (such as 4-methyl-l-pentene, allylcy-clohexane and allyltrimethylsilane) were also good alkylation agents, giving the corresponding branched alkylation products 190 in 80-95% yields and high enantioselectivity (up to 91 9 er, entries 3-5). [Pg.205]

In some cases metals will react directly with alkenes (equation 5.63). ° In addition, alkenes can undergo carbometalation, as illustrated in equation 5.64. ... [Pg.316]

In addition to the primary alkylated product formed according to the above mechanism (eqs. 48-51), various other products may also be formed during alkane-alkene alkylation. These may be isomeric alkylated products resulting from the rearrangements of carbocations. Carbocation 13 may participate in a series of hydride and alkyde shifts, and each carbocation thus formed may react via hydride ion transfer to form isomeric alkanes. In addition, alkenes often undergo isomerization prior to participating in alkylation. It was observed, for example, that in the alkylation of isobutane with n-butenes in the presence of protic acids product distributions are very similar. This may be explained by a fast equilibration of n-butenes prior to participating in the alkylation step. [Pg.25]

Alkenes are reduced by addition of H2 in the presence of a catalyst such as platinum or palladium to yield alkanes, a process called catalytic hydrogenation. Alkenes are also oxidized by reaction with a peroxyacid to give epoxides, which can be converted into trans-l,2-diols by acid-catalyzed hydrolysis. The corresponding cis-l,2-diols can be made directly from alkenes by hydroxylation with OSO4. Alkenes can also be cleaved to produce carbonyl compounds by reaction with ozone, followed by reduction with zinc metal. In addition, alkenes react with divalent substances called carbenes, R2C , to give cyclopropanes. Nonhalo-genated cyclopropanes are best prepared by treatment of the alkene with CH2I2 and zinc-copper, a process called the Simmons-Smith reaction. [Pg.301]

The region of high electron density between the doubly bonded carbon atoms gives alkenes an additional reactivity and in addition to burning and reacting with halogens, alkenes will add on other molecules for example ... [Pg.173]

In addition to the volatile silanes, silicon also forms non-volatile hydrides with formulae (SiHj) , but little is known about their structure. Silicon, however, does not form unsaturated hydrides corresponding to the simple alkenes. [Pg.176]

Migration of a hydride ligand from Pd to a coordinated alkene (insertion of alkene) to form an alkyl ligand (alkylpalladium complex) (12) is a typical example of the a, /(-insertion of alkenes. In addition, many other un.saturated bonds such as in conjugated dienes, alkynes, CO2, and carbonyl groups, undergo the q, /(-insertion to Pd-X cr-bonds. The insertion of an internal alkyne to the Pd—C bond to form 13 can be understood as the c -carbopa-lladation of the alkyne. The insertion of butadiene into a Ph—Pd bond leads to the rr-allylpalladium complex 14. The insertion is usually highly stereospecific. [Pg.7]

In addition to benzene and naphthalene derivatives, heteroaromatic compounds such as ferrocene[232, furan, thiophene, selenophene[233,234], and cyclobutadiene iron carbonyl complexpSS] react with alkenes to give vinyl heterocydes. The ease of the reaction of styrene with sub.stituted benzenes to give stilbene derivatives 260 increases in the order benzene < naphthalene < ferrocene < furan. The effect of substituents in this reaction is similar to that in the electrophilic aromatic substitution reactions[236]. [Pg.56]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

Terminal alkynes undergo the above-mentioned substitution reaction with aryl and alkenyl groups to form arylalkynes and enynes in the presence of Cul as described in Section 1.1.2.1. In addition, the insertion of terminal alkynes also takes place in the absence of Cul, and the alkenylpalladium complex 362 is formed as an intermediate, which cannot terminate by itself and must undergo further reactions such as alkene insertion or anion capture. These reactions of terminal alkynes are also treated in this section. [Pg.179]

In the presence of a double bond at a suitable position, the CO insertion is followed by alkene insertion. In the intramolecular reaction of 552, different products, 553 and 554, are obtained by the use of diflerent catalytic spe-cies[408,409]. Pd(dba)2 in the absence of Ph,P affords 554. PdCl2(Ph3P)3 affords the spiro p-keto ester 553. The carbonylation of o-methallylbenzyl chloride (555) produced the benzoannulated enol lactone 556 by CO, alkene. and CO insertions. In addition, the cyclobutanone derivative 558 was obtained as a byproduct via the cycloaddition of the ketene intermediate 557[4I0]. Another type of intramolecular enone formation is used for the formation of the heterocyclic compounds 559[4l I]. The carbonylation of the I-iodo-1,4-diene 560 produces the cyclopentenone 561 by CO. alkene. and CO insertions[409,4l2]. [Pg.204]

Acyl halides are intermediates of the carbonylations of alkenes and organic-halides. Decarbonylation of acyl halides as a reversible process of the carbo-nylation is possible with Pd catalyst. The decarbonylation of aliphatic acid chlorides proceeds with Pd(0) catalyst, such as Pd on carbon or PdC, at around 200 °C[109,753]. The product is a mixture of isomeric internal alkenes. For example, when decanoyl chloride is heated with PdCF at 200 C in a distillation flask, rapid evolution of CO and HCl stops after I h, during which time a mixture of nonene isomers was distilled off in a high yield. The decarbonylation of phenylpropionyl chloride (883) affords styrene (53%). In addition, l,5-diphenyl-l-penten-3-one (884) is obtained as a byproduct (10%). formed by the insertion of styrene into the acyl chloride. Formation of the latter supports the formation of acylpalladium species as an intermediate of the decarbonylation. Decarbonylation of the benzoyl chloride 885 can be carried out in good yields at 360 with Pd on carbon as a catalyst, yielding the aryl chloride 886[754]. [Pg.258]

In addition to the preparation of l-alkenes, the hydrogenolysis of allylic compounds with formate is used for the protection and deprotection of carboxylic acids, alcohols, and amines as allyl derivatives (see Section 2.9). [Pg.368]

Dimethyl acetylenedicarboxylate (DMAD) (125) is a very special alkyne and undergoes interesting cyclotrimerization and co-cyclization reactions of its own using the poorly soluble polymeric palladacyclopentadiene complex (TCPC) 75 and its diazadiene stabilized complex 123 as precursors of Pd(0) catalysts, Cyclotrimerization of DMAD is catalyzed by 123[60], In addition to the hexa-substituted benzene 126, the cyclooctatetraene derivative 127 was obtained by the co-cyclization of trimethylsilylpropargyl alcohol with an excess of DMAD (125)[6l], Co-cyclization is possible with various alkenes. The naphthalene-tetracarboxylate 129 was obtained by the reaction of methoxyallene (128) with an excess of DMAD using the catalyst 123[62],... [Pg.487]

In addition to being regioselective alcohol dehydrations are stereoselective A stereo selective reaction is one m which a single starting material can yield two or more stereoisomeric products but gives one of them m greater amounts than any other Alcohol dehydrations tend to produce the more stable stereoisomer of an alkene Dehydration of 3 pentanol for example yields a mixture of trans 2 pentene and cis 2 pentene m which the more stable trans stereoisomer predominates... [Pg.205]

In addition to being regioselective dehydrohalogenation of alkyl halides is stereo selective and favors formation of the more stable stereoisomer Usually as m the case of 5 bromononane the trans (or E) alkene is formed m greater amounts than its cis (or Z) stereoisomer... [Pg.213]

Epoxidation of alkenes with peroxy acids is a syn addition to the double bond Substituents that are cis to each other in the alkene remain cis in the epoxide substituents that are trans in the alkene remain trans m the epoxide... [Pg.262]

A substantial portion of fhe gas and vapors emitted to the atmosphere in appreciable quantity from anthropogenic sources tends to be relatively simple in chemical structure carbon dioxide, carbon monoxide, sulfur dioxide, and nitric oxide from combustion processes hydrogen sulfide, ammonia, hydrogen chloride, and hydrogen fluoride from industrial processes. The solvents and gasoline fractions that evaporate are alkanes, alkenes, and aromatics with relatively simple structures. In addition, more complex... [Pg.44]

The couplings of vicinal protons in 1,2-disubstituted alkenes lie in the range 6-12 Hz for cis protons (dihedral angle 0°) and 12-17 Hz for trans protons (dihedral angle 180°), thus also following the Karplus-Conroy equation. Typical examples are the alkene proton AB systems of coumarin (16a, cis) and tra 5-cinnamic acid (16b), and of the cis-trans isomers 17a and b of ethyl isopente-nyl ether, in addition to those in problems 3, 4, 8, 11, 13 and 38. [Pg.44]

Reactions of alkynes with electrophiles are generally similar to those of alkenes. Because the HOMO of alkynes (acetylenes) is also of n type, it is not surprising that there IS a good deal of similarity between alkenes and alkynes in their reactivity toward electrophilic reagents. The fundamental questions about additions to alkynes include the following. How reactive are alkynes in comparison with alkenes What is the stereochemistry of additions to alkynes And what is the regiochemistry of additions to alkynes The important role of halonium ions and mercurinium ions in addition reactions of alkenes raises the question of whether similar species can be involved with alkynes, where the ring would have to include a double bond ... [Pg.371]

Part B of Table 12.2 gives some addition reaction rates. Comparison of entries 19 and 20 shows that the phenyl radical is much more reactive toward addition than the benzy 1 radical. Comparison of entries 22 and 23 shows that methyl radicals are less reactive than phenyl radicals in additions to an aromatic ring. Note that additions to aromatic rings are much slower than additions to alkenes. [Pg.690]

Carbocations can also be generated during the electrolysis, and they give rise to alcohols and alkenes. The carbocations are presumably formed by an oxidation of the radical at the electrode before it reacts or diffuses into solution. For example, an investigation of the electrolysis of phenylacetic acid in methanol has led to the identification of benzyl methyl ether (30%), toluene (1%), benzaldehyde dimethylacetal (1%), methyl phenylacetate (6%), and benzyl alcohol (5%), in addition to the coupling product bibenzyl (26%). ... [Pg.727]


See other pages where Alkene in addition is mentioned: [Pg.199]    [Pg.86]    [Pg.149]    [Pg.330]    [Pg.294]    [Pg.199]    [Pg.199]    [Pg.86]    [Pg.149]    [Pg.330]    [Pg.294]    [Pg.199]    [Pg.242]    [Pg.23]    [Pg.28]    [Pg.209]    [Pg.522]    [Pg.401]    [Pg.335]    [Pg.249]    [Pg.263]    [Pg.155]    [Pg.6]    [Pg.227]    [Pg.701]    [Pg.873]    [Pg.188]   
See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Carbocation Rearrangements in Hydrogen Halide Addition to Alkenes

Cyanogen chloride in additions alkenes

In additions chlonne fluonde to alkenes

In additions of chlonne fluonde to alkenes

In additions of chlonne to alkenes

In additions of iodine fluonde to alkenes

Mercuric salts in addition reactions of alkenes

Orientation in Addition to Alkenes

Rearrangement in electrophilic addition to alkenes

Rearrangements in hydrogen halide addition to alkenes

Ruthenium-catalyzed Addition of Sulfonyl Chlorides to Alkenes in Organic Synthesis

© 2024 chempedia.info