Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immiscibility Interfacial Tension

The theory of Leibler holds for mainly compatible systems. Leibler developed a mean field formalism to study the interfacial properties of two polymers, A and B with an A-B copolymer. An expression for interfacial tension reduction was developed by Noolandi and Hong [ 18] based on thermodynamics to explain the emulsifying effect of the A-b-B in immiscible A-B blends (A-A-b-B-B). [18,19]. The expression for interfacial tension reduction Ar) in a binary lend upon the addition of divalent copolymer is given by ... [Pg.637]

The applicability of Noolandi and Hong s theory of compatibilization of immiscible blends using block copolymers has been extended to the reactive compatibilization technique by Thomas and coworkers [75,76]. According to Noolandi and Hong [77], the interfacial tension is expected to decrease linearly with the addition... [Pg.679]

A similar technique, the so-called spontaneous emulsification solvent diffusion method, is derived from the solvent injection method to prepare liposomes [161]. Kawashima et al. [162] used a mixed-solvent system of methylene chloride and acetone to prepare PLGA nanoparticles. The addition of the water-miscible solvent acetone results in nanoparticles in the submicrometer range this is not possible with only the water-immiscible organic solvent. The addition of acetone decreases the interfacial tension between the organic and the aqueous phase and, in addition, results in the perturbation of the droplet interface because of the rapid diffusion of acetone into the aqueous phase. [Pg.275]

Sudden Cooling of Emulsion (Thermal Shock) Sudden temperature drop or freezing i.e., giving a thermal shock) of an emulsion mostly enhances the interfacial tension between the two immiscible phases thereby causing coalescence. [Pg.402]

Liquid liquid interfacial tension, and density difference, in the immiscible (monotectic) alloy (Al34 5Bi<55 5)95Si5 (mass%) have been measured by Kaban and Hoyer (2006). Addition of Si to the binary Al-Bi alloy increases the interfacial tension between the Al-and Bi-rich liquid phases. [Pg.86]

When a dispersed phase is passed through a nozzle immersed in an immiscible continuous phase, the most important variables influencing the resultant drop size are the velocity of the dispersed phase, viscosity and density of continuous phase, and the density of the dispersed phase (G2, HI, H5, M3, Nl, P5, R3, S5). In general, an increase in continuous-phase viscosity, nozzle diameter, and interfacial tension increases the drop volume, whereas the increase in density difference results in its decrease. However, Null and Johnson (N4) do not find the influence of continuous-phase viscosity significant and exclude this variable from their analysis. Contradictory findings... [Pg.334]

Surface tension is a measure of the force acting at a boundary between two phases. If the boundary is between a liquid and a solid or between a liquid and a gas (air), the attractive forces are referred to as surface tension, but the attractive forces between two immiscible liquids are referred to as interfacial tension. [Pg.47]

Unfortunately, little direct information is available on the physicochemical properties of the interface, since real interfacial properties (dielectric constant, viscosity, density, charge distribution) are difficult to measure, and the interpretation of the limited results so far available on systems relevant to solvent extraction are open to discussion. Interfacial tension measurements are, in this respect, an exception and can be easily performed by several standard physicochemical techniques. Specialized treatises on surface chemistry provide an exhaustive description of the interfacial phenomena [10,11]. The interfacial tension, y, is defined as that force per unit length that is required to increase the contact surface of two immiscible liquids by 1 cm. Its units, in the CGS system, are dyne per centimeter (dyne cm" ). Adsorption of extractant molecules at the interface lowers the interfacial tension and makes it easier to disperse one phase into the other. [Pg.224]

Compatibilizers are compounds that provide miscibility or compatibility to materials that are otherwise immiscible or only partially miscible yielding a homogeneous product that does not separate into its components. Typically, compatibilizers act to reduce the interfacial tension and are concentrated at phase boundaries. Reactive compatibilizers chemically react with the materials they are to make compatible. Nonreactive compatibilizers perform their task by physically making the various component materials compatible. [Pg.492]

The integrated DLS device provides an example of a measurement tool tailored to nano-scale structure determination in fluids, e.g., polymers induced to form specific assemblies in selective solvents. There is, however, a critical need to understand the behavior of polymers and other interfacial modifiers at the interface of immiscible fluids, such as surfactants in oil-water mixtures. Typical measurement methods used to determine the interfacial tension in such mixtures tend to be time-consuming and had been described as a major barrier to systematic surveys of variable space in libraries of interfacial modifiers. Critical information relating to the behavior of such mixtures, for example, in the effective removal of soil from clothing, would be available simply by measuring interfacial tension (ILT ) for immiscible solutions with different droplet sizes, a variable not accessible by drop-volume or pendant drop techniques [107]. [Pg.98]

Fig. 23 a Image of a microfluidic chip used for IFT measurements filled with liquid dye to illuminate channels. To perform the measurement, drops are injected (fluid la and b) are injected into an immiscible stream (2). Additional immiscible matrix is added (3a and 3b) conveying the drops into channel 4 for analysis and measurement. Constrictions in channel 4 accelerate/stretch the drops. Multiple constrictions enable measurement at different interface age. The channel geometry is shown schematically in the inset (from [108]). b Interfacial tension (ct) of water/ethylene glycol mixtures (binary drops) in PDMS oil, as a function of composition ((j)). (Reproduced with permission from [109])... [Pg.99]

Measurement of Interfacial Tension (between Two Immiscible Liquids)... [Pg.37]

The factors determining the appearance of ordered cell-like motions were first investigated by Sternling and Scriven (S33) who considered the two-dimensional stability of a plane interface separating two immiscible semi-infinite fluid phases with mass transfer occurring between the phases. This system was shown to be unstable for mass transfer in one direction, but stable for transfer in the opposite direction. For an interfacial tension-lowering solute, instability... [Pg.246]

Taking into consideration that the solvents are practically immiscible and that 1-octadecanol and dodecylaimmonium chloride are soluble only in hexane and water respectively, the total differential of the interfacial tension Y can be expressed as a function of temperature T, pressure p, molality m, and molality as follows (4) ... [Pg.313]

In the case of batch agitation of immiscible liquid mixtures there are relatively few data. Presumably the same curves developed for single liquids could be applied provided the physical properties of the mixture could be adequately characterized. The Weber number Nwe is presumably of importance, since it introduces the property of interfacial tension, but there has been no work establishing its influence. Miller and Mann (M2) found that use of an arithmetic average of the densities of the unmixed liquids,... [Pg.297]

Several detailed discussions have described the complex theories of emulsion technology (1, 2, > 1 ) To summarize these theories, emulsifiers are essential for emulsion formation and stabilization to occur these surface-active compounds reduce the surface and interfacial tensions between two immiscible liquids, but this property accounts for only part of the mechanisms at work in emulsification. Three separate mechanisms that appear to be involved in formation of a stable emulsion include ... [Pg.217]

Emulsification is a stabilizing effect of proteins a lowering of the interfacial tension between immiscible components that allow the formation of a protective layer around oil droplets. The inherent properties of proteins or their molecular conformation, denaturation, aggregation, pH solubility, and susceptibility to divalent cations affect their performance in model and commercial emulsion systems. Emulsion capacity profiles of proteins closely resemble protein solubility curves and thus the factors that influence solubility properties (protein composition and structure, methods and conditions of extraction, processing, and storage) or treatments used to modify protein character also influence emulsifying properties. [Pg.340]

Emulsions and foams are two other areas in which dynamic and equilibrium film properties play a considerable role. Emulsions are colloidal dispersions in which two immiscible liquids constitute the dispersed and continuous phases. Water is almost always one of the liquids, and amphipathic molecules are usually present as emulsifying agents, components that impart some degree of durability to the preparation. Although we have focused attention on the air-water surface in this chapter, amphipathic molecules behave similarly at oil-water interfaces as well. By their adsorption, such molecules lower the interfacial tension and increase the interfacial viscosity. Emulsifying agents may also be ionic compounds, in which case they impart a charge to the surface, which in turn establishes an ion atmosphere of counterions in the adjacent aqueous phase. These concepts affect the formation and stability of emulsions in various ways ... [Pg.322]

In a blend of immiscible homopolymers, macrophase separation is favoured on decreasing the temperature in a blend with an upper critical solution temperature (UCST) or on increasing the temperature in a blend with a lower critical solution temperature (LCST). Addition of a block copolymer leads to competition between this macrophase separation and microphase separation of the copolymer. From a practical viewpoint, addition of a block copolymer can be used to suppress phase separation or to compatibilize the homopolymers. Indeed, this is one of the main applications of block copolymers. The compatibilization results from the reduction of interfacial tension that accompanies the segregation of block copolymers to the interface. From a more fundamental viewpoint, the competing effects of macrophase and microphase separation lead to a rich critical phenomenology. In addition to the ordinary critical points of macrophase separation, tricritical points exist where critical lines for the ternary system meet. A Lifshitz point is defined along the line of critical transitions, at the crossover between regimes of macrophase separation and microphase separation. This critical behaviour is discussed in more depth in Chapter 6. [Pg.9]

One of the most important applications of block copolymers is as compatibi-lizers of otherwise immiscible homopolymers. This compatibilization results from the reduction of interfacial tension due to segregation of copolymer to the interface between homopolymers. Experiments and theory concerned with the understanding of the thermodynamics of these ternary blends are discussed in this chapter. [Pg.331]

The controlled drop tensiometer is a simple and very flexible method for measuring interfacial tension (IFI) in equilibrium as well as in various dynamic conditions. In this technique (Fig. 1), the capillary pressure, p of a drop, which is formed at the tip of a capillary and immersed into another immiscible phase (liquid or gas), is measured by a sensitive pressure transducer. The capillary pressure is related to the IFT and drop radius, R, through the Young-Laplace equation [2,3] ... [Pg.2]

The properties of immiscible polymers blends are strongly dependent on the morphology of the blend, with optimal mechanical properties only being obtained at a critical particle size for the dispersed phase. As the size of the dispersed phase is directly proportional to the interfacial tension between the components of the blend, there is much interest in interfacial tension modification. Copolymers, either preformed or formed in situ, can localize at the interface and effectively modify the interfacial tension of polymer blends. The incorporation of PDMS phases is desirable as a method to improve properties such as impact resistance, toughness, tensile strength, elongation at break, thermal stability and lubrication. [Pg.2238]

Young s equation is also valid if we replace the gas by a second, immiscible liquid. The derivation would be the same, we only have to replace 7l and 7sl by the appropriate interfacial tensions. For example, we could determine the contact angle of a water drop on a solid surface under oil. Instead of having a gas saturated with the vapor, we require to have a second liquid saturated with dissolved molecules of the first liquid. [Pg.120]

When setting an immiscible liquid on top of another liquid, a macroscopic thick film or a drop forms, depending on the interfacial tensions. This is quantified using the spreading coefficient. [Pg.297]


See other pages where Immiscibility Interfacial Tension is mentioned: [Pg.70]    [Pg.415]    [Pg.415]    [Pg.183]    [Pg.585]    [Pg.586]    [Pg.633]    [Pg.667]    [Pg.119]    [Pg.290]    [Pg.418]    [Pg.349]    [Pg.378]    [Pg.183]    [Pg.401]    [Pg.142]    [Pg.144]    [Pg.262]    [Pg.10]    [Pg.98]    [Pg.139]    [Pg.415]    [Pg.415]    [Pg.53]   


SEARCH



Immiscibility

Immiscibility Immiscible

Immiscible

Interfacial tension

© 2024 chempedia.info