Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Identification flame ionization

The chromatogram can finally be used as the series of bands or zones of components or the components can be eluted successively and then detected by various means (e.g. thermal conductivity, flame ionization, electron capture detectors, or the bands can be examined chemically). If the detection is non-destructive, preparative scale chromatography can separate measurable and useful quantities of components. The final detection stage can be coupled to a mass spectrometer (GCMS) and to a computer for final identification. [Pg.97]

Figure 12.7 Cliromatograms of a polycarbonate sample (a) microcolumn SEC ti ace (b) capillary GC ti ace of inti oduced fractions. SEC conditions fused-silica (30 cm X 250 mm i.d.) packed with PL-GEL (50 A pore size, 5 mm particle diameter) eluent, THE at aElow rate of 2.0ml/min injection size, 200 NL UV detection at 254 nm x represents the polymer additive fraction ti ansfeired to EC system (ca. 6 p-L). GC conditions DB-1 column (15m X 0.25 mm i.d., 0.25 pm film thickness) deactivated fused-silica uncoated inlet (5 m X 0.32 mm i.d.) temperature program, 100 °C for 8 min, rising to 350 °C at a rate of 12°C/min flame ionization detection. Peak identification is as follows 1, 2,4-rert-butylphenol 2, nonylphenol isomers 3, di(4-tert-butylphenyl) carbonate 4, Tinuvin 329 5, solvent impurity 6, Ii gaphos 168 (oxidized). Reprinted with permission from Ref. (14). Figure 12.7 Cliromatograms of a polycarbonate sample (a) microcolumn SEC ti ace (b) capillary GC ti ace of inti oduced fractions. SEC conditions fused-silica (30 cm X 250 mm i.d.) packed with PL-GEL (50 A pore size, 5 mm particle diameter) eluent, THE at aElow rate of 2.0ml/min injection size, 200 NL UV detection at 254 nm x represents the polymer additive fraction ti ansfeired to EC system (ca. 6 p-L). GC conditions DB-1 column (15m X 0.25 mm i.d., 0.25 pm film thickness) deactivated fused-silica uncoated inlet (5 m X 0.32 mm i.d.) temperature program, 100 °C for 8 min, rising to 350 °C at a rate of 12°C/min flame ionization detection. Peak identification is as follows 1, 2,4-rert-butylphenol 2, nonylphenol isomers 3, di(4-tert-butylphenyl) carbonate 4, Tinuvin 329 5, solvent impurity 6, Ii gaphos 168 (oxidized). Reprinted with permission from Ref. (14).
The effort required to establish identity of a nitrosamine in an environmental sample depends on the nature of the problem and the specificity of the primary detection system. TEA response is much stronger evidence of identity than response from a flame ionization or nitrogen-specific detector. If TEA response is supported by chemical (9) or ultraviolet photolysis (8) supporting data, identification is adequate for many... [Pg.344]

The electron capture detector (ECD) is most frequently used to identify hexachloroethane. A flame ionization detector (FID) may also be used (NIOSH 1994). When unequivocal identification is required, an MS coupled to the GC column may be employed. [Pg.137]

Hyphenated methods can be divided into two types those that do and those that do not destroy the sample in the process of analysis. Spectrophotometric methods, thermal conductivity, and refractive index methods of detection do not destroy the sample. Chromatographic methods using flame ionization and similar detection methods destroy the sample as it is detected. Any hyphenated method that involves MS or thermal analysis (TA) will also destroy the sample. In most cases, the identification of the components in soil is most important, so the destruction of the analyte is of less importance. [Pg.323]

Tan [71] devised a rapid simple sample preparation technique for analysing polyaromatic hydrocarbons in sediments. Polyaromatic hydrocarbons are removed from the sediment by ultrasonic extraction and isolated by solvent partition and silica gel column chromatography. The sulphur removal step is combined into the ultrasonic extraction procedure. Identification of polyaromatic hydrocarbon is carried by gas chromatography alone and in conjunction with mass spectrometry. Quantitative determination is achieved by addition of known amounts of standard compounds using flame ionization and multiple ion detectors. [Pg.135]

Fig. 4 Gas chromatographic traces of extracts from females of the pale brown chafer Phyl-lopertha diversa monitored by a conventional detector, flame-ionization detector (FID), and a biosensor, electroantennographic detector (EAD), using a male antenna as the sensing element. Although the peak of the sex pheromone (arrow) is hardly seen in the FID trace, its pheromonal activity was initially indicated by the strong EAD peak. Structural elucidation, followed by synthesis and behavioral studies lead to the identification of an unusual sex pheromone, l,3-dimethyl-2,4-(lff,3ff)-quinazolinedione [124]. It is unlikely that this minor compound would be fished out by a bioassay-oriented isolation procedure... Fig. 4 Gas chromatographic traces of extracts from females of the pale brown chafer Phyl-lopertha diversa monitored by a conventional detector, flame-ionization detector (FID), and a biosensor, electroantennographic detector (EAD), using a male antenna as the sensing element. Although the peak of the sex pheromone (arrow) is hardly seen in the FID trace, its pheromonal activity was initially indicated by the strong EAD peak. Structural elucidation, followed by synthesis and behavioral studies lead to the identification of an unusual sex pheromone, l,3-dimethyl-2,4-(lff,3ff)-quinazolinedione [124]. It is unlikely that this minor compound would be fished out by a bioassay-oriented isolation procedure...
Neon may be analyzed by GC using a thermal conductivity or a flame ionization detector. The gas may be measured by GC/MS using a capillary column. Characteristic masses for its GC/MS identification are 20 and 22. [Pg.603]

The flame ionization detector (FID) can be used for the detection and quantitative estimation of components separated by the GC. Identification of major species can be achieved by a mass spectrometer which can not be used for quantitative analysis of complex mixtures such as coal liquids. [Pg.185]

Trimethylsilyl derivatives of ten hydroxy- and methoxyhydroxyflavonoids have been studied by the GC-FTIR technique." " The correlation found between retention and gas-phase IR data was used in structural identification of compounds having very similar chromatographic behavior. The shift of the carbonyl frequency gave information on the presence of substitution. Some hydroxy- and methoxy-substituted flavones have been studied following carbon dioxide supercritical fluid chromatography on polymethylsiloxane capillary columns using flame ionization and FTIR detection." " " ... [Pg.103]

Isolation and Identification of Hydroperoxide. A solution produced by oxidizing trans-2-butene was concentrated at reduced pressure without heating from 0.085M to 1.5M. The hydroperoxide was isolated from the concentrate by preparative chromatography under the following conditions a 5-foot 3/8-inch column of aluminum containing 10% diisodecyl phthalate on Fluoropak 80 Autoprep 705 with flame ionization detector carrier, 200 ml. per minute helium split 8 to 1 between trap and detector ... [Pg.106]

As seen in Chapter 9.C.2, a very wide variety of organics are found in particles in ambient air and in laboratory model systems. The most common means of identification and measurement of these species is mass spectrometiy (MS), combined with either thermal separation or solvent extraction and gas chromatographic separation combined with mass spectrometry and/or flame ionization detection. For larger, low-volatility organics, high-performance liquid chromatography (HPLC) is used, combined with various detectors such as absorption, fluorescence, and mass spectrometry. For applications of HPLC to the separation, detection, and measurement of polycyclic aromatic hydrocarbons, see Wingen et al. (1998) and references therein. [Pg.625]

A gas-solid chromatographic technique using flame ionization detection and a Porapak Q column has been used for the identification and the determination of ethanol, isopropanol, and acetone in pharmaceutical preparations. The technique involves direct injection of an aqueous dilution of the product, and therefore is simple and direct. [Pg.521]

Full identification of isolated sterols from commercially consumable fats performed by GC/MS, and quantitative estimation of cholesterol content by capillary GC with flame ionization detection. [Pg.465]

Static headspace GC involves heating the sample in an air-tight environment until the volatile lipids in the food reach an equilibrium with those in the surrounding air. The air above the sample (headspace) is then sampled and analyzed. Flame ionization detection (GC-FID) can be used for quantification and mass-selective detection (GC-MS) can be used for compound identification. This protocol also outlines semiquantitative and quantitative approaches for determination of volatile lipid concentration, and is particularly designed for analysis of a meat sample. [Pg.531]


See other pages where Identification flame ionization is mentioned: [Pg.102]    [Pg.253]    [Pg.314]    [Pg.100]    [Pg.439]    [Pg.24]    [Pg.280]    [Pg.1417]    [Pg.39]    [Pg.74]    [Pg.255]    [Pg.1047]    [Pg.17]    [Pg.191]    [Pg.475]    [Pg.198]    [Pg.4]    [Pg.74]    [Pg.217]    [Pg.61]    [Pg.902]    [Pg.1417]    [Pg.240]    [Pg.458]    [Pg.63]    [Pg.551]    [Pg.295]    [Pg.158]    [Pg.389]    [Pg.1013]    [Pg.1013]    [Pg.690]   
See also in sourсe #XX -- [ Pg.39 , Pg.41 ]




SEARCH



Flame ionization

Flame-ionization detector, identification

© 2024 chempedia.info