Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyl groups polyurethanes

The hydroxyl groups can be esterified normally the interesting diacrylate monomer (80) and the biologicaky active haloacetates (81) have been prepared in this manner. Reactions with dibasic acids have given polymers capable of being cross-linked (82) or suitable for use as soft segments in polyurethanes (83). Polycarbamic esters are obtained by treatment with a diisocyanate (84) or via the bischloroformate (85). [Pg.106]

Diester/Ether Diol of Tetrabromophthalic Anhydride. This material [77098-07-8] is prepared from TBPA in a two-step reaction. First TBPA reacts with diethylene glycol to produce an acid ester. The acid ester and propylene oxide then react to give a diester. The final product, a triol having two primary and one secondary hydroxyl group, is used exclusively as a flame retardant for rigid polyurethane foam (53,54). [Pg.470]

Cationic, anionic, and amphoteric surfactants derive thek water solubiUty from thek ionic charge, whereas the nonionic hydrophile derives its water solubihty from highly polar terminal hydroxyl groups. Cationic surfactants perform well in polar substrates like styrenics and polyurethane. Examples of cationic surfactants ate quaternary ammonium chlorides, quaternary ammonium methosulfates, and quaternary ammonium nitrates (see QuARTERNARY AMMONIUM compounds). Anionic surfactants work well in PVC and styrenics. Examples of anionic surfactants ate fatty phosphate esters and alkyl sulfonates. [Pg.297]

This process is based on the very high reactivity of the isocyanate group toward hydrogen present ia hydroxyl groups, amines, water, etc, so that the chain extension reaction can proceed to 90% yield or better. Thus when a linear polymer is formed by chain extension of a polyester or polyether of molecular weight 1000—3000, the final polyurethane may have a molecular weight of 100,000 or higher (see Urethane polymers). [Pg.471]

Polyurethane foams may be rigid, semi-rigid or flexible. They may be made from polyesters, polyethers or natural polyols such as castor oil (which contains approximately three hydroxyl groups in each molecule). Three general processes are available known as one-shot, prepolymer or quasi-prepolymer processes. These variations lead to 27 basic types of product or process, all of which have been used commercially. This section deals only with flexible foams (which are made only from polyesters and polyethers). Since prepolymers and... [Pg.791]

Polyurethanes are essentially the reaction products of polyisocyanates and polyesters containing free hydroxyl groups. They are comparable with the... [Pg.583]

We can make polyurethanes via one- or two-step operations. In the single-stage process, diols and isocyanates react directly to form polymers. If we wish to make thermoplastic linear polymers, we use only diisocyanates. When thermosets are required, we use a mixture of diisocyanates and tri- or polyisocyanates residues of the latter becoming crosslinks between chains. In the first step of the two-stage process, we make oligomers known as prepolymers, which are terminated either by isocyanate or hydroxyl groups. Polymers are formed in the second step, when the isocyanate terminated prepolymers react with diol chain extenders, or the hydroxyl terminated prepolymers react with di- or polyisocyanates. [Pg.386]

For imperfect epoxy-amine or polyoxypropylene-urethane networks (Mc=103-10 ), the front factor, A, in the rubber elasticity theories was always higher than the phantom value which may be due to a contribution by trapped entanglements. The crosslinking density of the networks was controlled by excess amine or hydroxyl groups, respectively, or by addition of monoepoxide. The reduced equilibrium moduli (equal to the concentration of elastically active network chains) of epoxy networks were the same in dry and swollen states and fitted equally well the theory with chemical contribution and A 1 or the phantom network value of A and a trapped entanglement contribution due to the similar shape of both contributions. For polyurethane networks from polyoxypro-pylene triol (M=2700), A 2 if only the chemical contribution was considered which could be explained by a trapped entanglement contribution. [Pg.403]

All polyurethanes have been obtained by reacting 1 1 molar ratios of isosorbide and diisocyanate. A slight excess of about 5-10% of the diisocyanate or of the diol resulted in the generation of soluble polyurethanes with lower molecular weight and possessing either functional isocyanate or hydroxyl groups, respectively. [Pg.178]

Castor oil is a triglyceride that is well suited for use in polyurethane applications. Unlike most other oil-producing plants, the castor plant produces a triglyceride containing >90% of a single fatty acid, that being ricinoleic acid. Ricinoleic acid contains secondary hydroxyl groups appended to the Cjg fatty acid backbone (Fig. 8). [Pg.328]

Hydroformylation is the process of coupling carbon monoxide to an olefin with a reductive catalyst and hydrogen to produce an aldehyde-functionalized substrate. This coupling is typically followed by hydrogenation to produce a primary hydroxyl group. Several academic and commercial programs have participated in the development of hydroformylated triglycerides and fatty acid derivatives for use in polyurethanes. Two main processes for the hydroformylation of seed oils have been utilized. [Pg.341]

To ensure a strong bond between liner and insulation as well as propellant to liner, it is necessary that liner as well as propellant cure well at the interfaces. This means that in many cases the rubber insulation must undergo some treatment to remove substances which may interfere with the liner cure. Such substances are usually low molecular weight compounds and can often be removed by heating—e.g., water, which would otherwise react with isocyanate in a polyurethane liner. In addition the insulation and/or the cured liner surface may be washcoated with a cure catalyst which will increase the reaction rate of alcoholic hydroxyl groups over the rate of reaction of water with isocyanate to such an extent that the latter reaction can no longer compete with the cure reaction. [Pg.124]

Polyurethanes (PU s). SL and 4,4 -diphenylmethane diisocyanate (MDI) were dissolved in tetrahydrofuran (THF), and the solution was stirred for 1 hr at 60°C. A THF solution of polyethylene glycol (PEG 400) and diethyl bis(2-hydroxyethyl)aminomethylphosphonate (polyol containing phosphorous) was added to the reaction mixture, and the reaction time was extended for 1 hr. In all reactions, the molar ratio of the total amount of isocyanate groups to the total amount of hydroxyl groups (NCO/OH) was maintained at 1.2. The lignin content in PU was 20 wt%. Each solution was drawn on a glass plate, and allowed to dry for 48 hr. The residual solvent in a sample was removed under vacuum and curing of each PU film was carried out at 120°C for 3 hr under a pressure of 50 kg/cm2. [Pg.385]

Since the early days of polyurethane discovery, the technology has focused on isocyanate reactions with polyesters or polyethers. The differences will be discussed in later sections. These reactions are responsible for the growth of the polyurethane industry. The polyesters of interest to polyurethane chemists terminate in hydroxyl groups and are therefore polyols produced by the polycondensation of dicarboxyhc acids and polyols. An example is a polyol with a polycarbonate structure (Figure 2.3). [Pg.38]

The two primary hydroxyl groups provide fast reaction rates with diisocyanates, which makes this diol attractive for use as a curative in foams. It provides latitude in improving physical properties of the foam, in particular the load-bearing properties. Generally, the ability to carry a load increases with the amount of 1,4-cydohexanedimethanol used in producing the high resilience foam (95). Other polyurethane derivatives of 1,4-cyclohexanedimethanol indude elastomers useful for synthetic rubber products with a wide range of hardness and elasticity (96). [Pg.374]


See other pages where Hydroxyl groups polyurethanes is mentioned: [Pg.124]    [Pg.101]    [Pg.101]    [Pg.53]    [Pg.124]    [Pg.101]    [Pg.101]    [Pg.53]    [Pg.239]    [Pg.417]    [Pg.374]    [Pg.345]    [Pg.350]    [Pg.450]    [Pg.452]    [Pg.790]    [Pg.428]    [Pg.24]    [Pg.60]    [Pg.239]    [Pg.10]    [Pg.430]    [Pg.407]    [Pg.237]    [Pg.212]    [Pg.363]    [Pg.42]    [Pg.60]    [Pg.190]    [Pg.190]    [Pg.191]    [Pg.330]    [Pg.100]    [Pg.406]    [Pg.427]    [Pg.316]    [Pg.380]    [Pg.9]    [Pg.12]    [Pg.5]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Hydroxyl-polyurethan

© 2024 chempedia.info