Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyl groups nature

C21H36O2. M,p. 238°C. There are four isomeric pregnane-3,20-diols differing only in the orientation of the hydroxyl groups at positions 3 and 20 and with the 5/ configuration. Only the 3a,20a occurs naturally. It is formed by reduction of progesterone in the liver and is the chief urinary metabolite of it, being... [Pg.326]

Figure Bl.25.9(a) shows the positive SIMS spectrum of a silica-supported zirconium oxide catalyst precursor, freshly prepared by a condensation reaction between zirconium ethoxide and the hydroxyl groups of the support [17]. Note the simultaneous occurrence of single ions (Ff, Si, Zr and molecular ions (SiO, SiOFf, ZrO, ZrOFf, ZrtK. Also, the isotope pattern of zirconium is clearly visible. Isotopes are important in the identification of peaks, because all peak intensity ratios must agree with the natural abundance. In addition to the peaks expected from zirconia on silica mounted on an indium foil, the spectrum in figure Bl. 25.9(a)... Figure Bl.25.9(a) shows the positive SIMS spectrum of a silica-supported zirconium oxide catalyst precursor, freshly prepared by a condensation reaction between zirconium ethoxide and the hydroxyl groups of the support [17]. Note the simultaneous occurrence of single ions (Ff, Si, Zr and molecular ions (SiO, SiOFf, ZrO, ZrOFf, ZrtK. Also, the isotope pattern of zirconium is clearly visible. Isotopes are important in the identification of peaks, because all peak intensity ratios must agree with the natural abundance. In addition to the peaks expected from zirconia on silica mounted on an indium foil, the spectrum in figure Bl. 25.9(a)...
The hydroxyl groups of glucose (and, of course, other saccharides) must be regio- and stereo-selectively attacked, if this most abundant natural carbon compound is to be used as starting material. We shall first show with a few selected examples, how this can be achieved (A.H. Haines, 1976 J. Lehmann, 1976 L. Hough, 1979). [Pg.266]

In keeping with its biogenetic origin m three molecules of acetic acid mevalonic acid has six carbon atoms The conversion of mevalonate to isopentenyl pyrophosphate involves loss of the extra carbon as carbon dioxide First the alcohol hydroxyl groups of mevalonate are converted to phosphate ester functions—they are enzymatically phosphorylated with introduction of a simple phosphate at the tertiary site and a pyrophosphate at the primary site Decarboxylation m concert with loss of the terti ary phosphate introduces a carbon-carbon double bond and gives isopentenyl pyrophos phate the fundamental building block for formation of isoprenoid natural products... [Pg.1091]

Study of the mechanism of this complex reduction-Hquefaction suggests that part of the mechanism involves formate production from carbonate, dehydration of the vicinal hydroxyl groups in the ceUulosic feed to carbonyl compounds via enols, reduction of the carbonyl group to an alcohol by formate and water, and regeneration of formate (46). In view of the complex nature of the reactants and products, it is likely that a complete understanding of all of the chemical reactions that occur will not be developed. However, the Hquefaction mechanism probably involves catalytic hydrogenation because carbon monoxide would be expected to form at least some hydrogen by the water-gas shift reaction. [Pg.26]

The biosynthesis process, which consists essentially of radical coupling reactions, sometimes followed by the addition of water, of primary, secondary, and phenohc hydroxyl groups to quinonemethide intermediates, leads to the formation of a three-dimensional polymer which lacks the regular and ordered repeating units found in other natural polymers such as cellulose and proteins. [Pg.137]

Natural Products. Many natural products, eg, sugars, starches, and cellulose, contain hydroxyl groups that react with propylene oxide. Base-cataly2ed reactions yield propylene glycol monoethers and poly(propylene glycol) ethers (61—64). Reaction with fatty acids results ia a mixture of mono- and diesters (65). Cellulose fibers, eg, cotton (qv), have been treated with propylene oxide (66—68). [Pg.135]

The aromatic nature of lignin contrasts with the aliphatic stmcture of the carbohydrates and permits the selective use of electrophilic substitution reactions, eg, chlorination, sulfonation, or nitration. A portion of the phenoUc hydroxyl units, which are estimated to comprise 30 wt % of softwood lignin, are unsubstituted. In alkaline systems the ionized hydroxyl group is highly susceptible to oxidative reactions. [Pg.253]

Sulfated Natural Oils and Fats. Sulfated natural triglycerides were the first nonsoap commercial surfactants introduced in the middle of the nineteenth century. Since then sulfates of many vegetable, animal, and fish oils have been investigated (see also Fats AND FATTY oils). With its hydroxyl group and a double bond, ricinoleic acid (12-hydroxy-9,10-octadecenoic acid) is an oil constituent particularly suited for sulfation. Its sulfate is known as turkey-red oil. Oleic acid is also suited for sulfation. Esters of these acids can be sulfated with a minimum of hydrolysis of the glyceride group. Polyunsaturated acids, with several double bonds, lead to dark-colored sulfation products. The reaction with sulfuric acid proceeds through either the hydroxyl or the double bond. The sulfuric acid half ester thus formed is neutralized with caustic soda ... [Pg.244]

Carboxylic Acid Esters. In the carboxyflc acid ester series of surfactants, the hydrophobe, a naturally occurring fatty acid, is solubilized with the hydroxyl groups of polyols or the ether and terminal hydroxyl groups of ethylene oxide chains. [Pg.248]

Natural Ethoxylated Fats, Oils, and Waxes. Castor oil (qv) is a triglyceride high in ticinoleic esters. Ethoxylation in the presence of an alkaline catalyst to a polyoxyethylene content of 60—70 wt % yields water-soluble surfactants (Table 20). Because alkaline catalysts also effect transestenfication, ethoxylated castor oil surfactants are complex mixtures with components resulting from transesterrfication and subsequent ethoxylation at the available hydroxyl groups. The ethoxylates are pale amber Hquids of specific gravity just above 1.0 at room temperature. They are hydrophilic emulsifiers, dispersants, lubricants, and solubilizers used as textile additives and finishing agents, as well as in paper (qv) and leather (qv) manufacture. [Pg.251]

The polyaddition reaction is influenced by the stmcture and functionaHty of the monomers, including the location of substituents in proximity to the reactive isocyanate group (steric hindrance) and the nature of the hydroxyl group (primary or secondary). Impurities also influence the reactivity of the system for example, acid impurities in PMDI require partial neutralization or larger amounts of the basic catalysts. The acidity in PMDI can be reduced by heat or epoxy treatment, which is best conducted in the plant. Addition of small amounts of carboxyHc acid chlorides lowers the reactivity of PMDI or stabilizes isocyanate terrninated prepolymers. [Pg.342]

Because a hexose contains four chiral carbon atoms, there are 2 = 16 different possible arrangements of the hydroxyl groups in space, ie, there are 16 different stereoisomers. The stmctures of half of these, the eight D isomers, are shown in Figure 1. Only three of these 16 stereoisomers are commonly found in nature D-glucose [50-99-7] D-galactose [59-23-4] and D-mannose [3458-28-4]. [Pg.474]

Esterification. The hydroxyl groups of sugars can react with organic and inorganic acids just as other alcohols do. Both natural and synthetic carbohydrate esters are important in various apphcations (1,13). Phosphate monoesters of sugars are important in metabohc reactions. An example is the enzyme-catalyzed, reversible aldol addition between dibydroxyacetone phosphate [57-04-51 and D-ylyceraldehyde 3-phosphate [591-57-1 / to form D-fmctose 1,6-bisphosphate [488-69-7],... [Pg.481]


See other pages where Hydroxyl groups nature is mentioned: [Pg.195]    [Pg.206]    [Pg.69]    [Pg.195]    [Pg.206]    [Pg.69]    [Pg.192]    [Pg.193]    [Pg.304]    [Pg.2788]    [Pg.10]    [Pg.279]    [Pg.101]    [Pg.143]    [Pg.565]    [Pg.366]    [Pg.65]    [Pg.270]    [Pg.270]    [Pg.244]    [Pg.482]    [Pg.34]    [Pg.43]    [Pg.484]    [Pg.513]    [Pg.535]    [Pg.285]    [Pg.47]    [Pg.267]    [Pg.61]    [Pg.96]    [Pg.473]    [Pg.475]    [Pg.478]    [Pg.489]    [Pg.242]    [Pg.371]    [Pg.205]    [Pg.218]    [Pg.117]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Replacement of the Hydroxyl (-OH) Functional Group by Carbon An Example from Nature

© 2024 chempedia.info