Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroquinones reactions with

Reactions with Organic Compounds. Tetrafluoroethylene and OF2 react spontaneously to form C2F and COF2. Ethylene and OF2 may react explosively, but under controlled conditions monofluoroethane and 1,2-difluoroethane can be recovered (33). Benzene is oxidized to quinone and hydroquinone by OF2. Methanol and ethanol are oxidized at room temperature (4). Organic amines are extensively degraded by OF2 at room temperature, but primary aHphatic amines in a fluorocarbon solvent at —42°C are smoothly oxidized to the corresponding nitroso compounds (34). [Pg.220]

Displacement reactions with oxygen nucleophiles are of potential commercial interest. Alkaline hydrolysis provides 2-fluoro-6-hydroxypyridine [55758-32-2], a precursor to 6-fluoropyridyl phosphoms ester insecticides (410—412). Other oxygen nucleophiles such as bisphenol A and hydroquinone have been used to form aryl—pyridine copolymers (413). [Pg.336]

Sulfation by sulfamic acid has been used ia the preparation of detergents from dodecyl, oleyl, and other higher alcohols. It is also used ia sulfating phenols and phenol—ethylene oxide condensation products. Secondary alcohols react ia the presence of an amide catalyst, eg, acetamide or urea (24). Pyridine has also been used. Tertiary alcohols do not react. Reactions with phenols yield phenyl ammonium sulfates. These reactions iaclude those of naphthols, cresol, anisole, anethole, pyrocatechol, and hydroquinone. Ammonium aryl sulfates are formed as iatermediates and sulfonates are formed by subsequent rearrangement (25,26). [Pg.62]

In the benzene and naphthalene series there are few examples of quinone reductions other than that of hydroquinone itself. There are, however, many intermediate reaction sequences in the anthraquinone series that depend on the generation, usually by employing aqueous "hydros" (sodium dithionite) of the so-called leuco compound. The reaction with leuco quinizarin [122308-59-2] is shown because this provides the key route to the important 1,4-diaminoanthtaquinones. [Pg.289]

Reaction with a molecule to form a stable free radical, e.g. hydroquinone... [Pg.26]

The hydrazine reaction with oxygen is slow, but with the advent of organic catalysts such as hydroquinone (which speeds up the reaction 50-fold or so), hydrazine is also the product of choice in medium-pressure (say, over 650 to 950 psig) industrial and cogeneration plants. [Pg.489]

Because of the strongly electron-withdrawing character of the Cr(CO)5 unit, the reaction with alkynes to hydroquinone and phenol derivatives [35-37] (Dotz reaction) is possible according to Scheme 6 (see also Chap. 4 Chromium -templated Benzannulation Reactions ). [Pg.5]

The strong Bronstedt acid nature of some hexacoordinated phosphorus derivatives, [7",H ] (Et20)4 in particular, was recently used within the context of an industrial application [36]. The conjugated acid of tris(oxalato)phosphate anion 7 was found to effectively catalyze the ring-forming reaction of trimethyl-hydroquinone 63 with isophytol 64 to give (all rac)-a-tocopherol 65 (ethylene-carbonate/heptane 1 1,100 °C, 90%, Scheme 19). This process is particularly... [Pg.28]

Similarly, 2,3,5-trimethyl-1,4-hydroquinone (TMHQ), a key intermediate in the synthesis of vitamin E, is produced via oxidation of 2,3,6-trimethylphenol to the corresponding benzoquinone. Originally this was performed by reaction with chlorine followed by hydrolysis, but this process has now been superseded by oxidation with O2 in the presence of a Cu2Cl2/LiCl catalyst (see Fig. 2.20) (Mercier and Chabardes, 1994). Alternatively, this oxidation can also be cataly.sed by a heteropolyanion (Kozhevnikov, 1995). [Pg.39]

Aromatic diazo compounds can be reduced in water via a radical process (Scheme 11.5).108 The reduction mechanism of arenediazo-nium salts by hydroquinone was studied in detail.109 Arenediazonium tetrafluoroborate salts undergo facile electron-transfer reactions with hydroquinone in aqueous phosphate-buffered solution containing the hydrogen donor solvent acetonitrile. Reaction rates are first order in a... [Pg.362]

Nitration versus oxidative dealkylation with nitrogen dioxides. The reaction of various substituted hydroquinone ethers with nitrogen oxides leads to either oxidation (i.e. 1,4-benzoquinones) or nitration (i.e. nitro-p-dimethoxybenzenes) depending on the reaction conditions239 (equation 84). [Pg.285]

There are two kinds of redox interactions, in which ubiquinones can manifest their antioxidant activity the reactions with quinone and hydroquinone forms. It is assumed that the ubiquinone-ubisemiquinone pair (Figure 29.10) is an electron carrier in mitochondrial respiratory chain. There are numerous studies [235] suggesting that superoxide is formed during the one-electron oxidation of ubisemiquinones (Reaction (25)). As this reaction is a reversible one, its direction depends on one-electron reduction potentials of semiquinone and dioxygen. [Pg.877]

Anthracyclinones.1 Phthaloyl dichlorides undergo Friedel Crafts reactions with hydroquinones or the dimethyl ethers to give 1,4-dihydroxyanthraquinones in one step. [Pg.263]

The hydroquinone process was developed by BASF [12]. Hydroquinone-2,5-di-carboxylic acid is prepared by a modified Kolbe-Schmidt synthesis from hydroquinone and carbon dioxide. Subsequent reaction with arylamine in an aqueous-methanolic suspension in the presence of an aqueous sodium chlorate solution and a vanadium salt affords the product in good yield ... [Pg.457]

Palladium(O) forms a complex with quinone that is now electron rich and can be protonated to give hydroquinone and palladium(II). The latter can start a new cycle via a carbomethoxy species after reaction with methanol and CO (c.f. reaction (6), Figure 12.4). Thus we have formally switched from a hydride initiator to a carbomethoxy initiator species. Addition of quinone to a nonactive or moderately active palladium system is a diagnostic tool that tells us whether zerovalent palladium is involved as an inactive state. Likewise, one might add dihydrogen to a system to see whether palladium(II) salts need to be converted to a hydride to reactivate our dormant catalyst. [Pg.264]

The aquated iron(III) ion is an oxidant. Reaction with reducing ligands probably proceeds through complexing. Rapid scan spectrophotometry of the Fe(III)-cysteine system shows a transient blue Fe(lII)-cysteine complex and formation of Fe(II) and cystine. The reduction of Fe(lII) by hydroquinone, in concentrated solution has been probed by stopped-flow linked to x-ray absorption spectrometry. The changing charge on the iron is thereby assessed. In the reaction of Fe(III) with a number of reducing transition metal ions M in acid, the rate law... [Pg.396]

Chinese chemists have reported the synthesis of pentacyclo[4.3.0.0 , 0 ]nonane-2,4-bis(trinitroethyl ester) (88). This compound may find potential use as an energetic plastisizer in futuristic explosive and propellant formulations. The synthesis of (88) uses widely available hydroquinone (81) as a starting material. Thus, bromination of (81), followed by oxidation, Diels-Alder cycloaddition with cyclopentadiene, and photochemical [2 - - 2] cycloaddition, yields the dione (85) as a mixture of diastereoisomers, (85a) and (85b). Favorskii rearrangement of this mixture yields the dicarboxylic acid as a mixture of isomers, (86a) and (86b), which on further reaction with thionyl chloride, followed by treating the resulting acid chlorides with 2,2,2-trinitroethanol, gives the energetic plastisizer (88) as a mixture of isomers, (88a) and (88b). Improvements in the synthesis of nitroform, and hence 2,2,2-trinitroethanol, makes the future application of this product attractive. [Pg.77]

Hydroquinone reacts with CF3SCI to afford, not as expected CF38-substituted compounds, but chlorohydroquinones instead (143). However, carrying out the reaction with 4-methox3q>henol in the presence of a threefold excess of pyridine and an excess of CF3SCI,... [Pg.179]

The cycloadditions between tetrahalogenocyclopropenes and butadienes are usually carried out at about 100 °C in an inert solvent, in the presence of a small amount of K2CO3 and hydroquinone in order to prevent polymerization of the diene. Originally endo selectivity was assumed for additions of substituted open-chain dienes to 1,2-dihalogeno- and tetrahalogenocyclopropenes, but more recent X-ray and NMR investigations showed that the preferred mode of addition is exo. The cycloadducts are conveniently aromatized to cydoproparenes by reaction with r-BuOK in THF at low temperature. Since 1,1-dihalogenocyclo-proparenes solvolyze veiy readily, an anhydrous work-up procedure is usually indicated. [Pg.41]


See other pages where Hydroquinones reactions with is mentioned: [Pg.450]    [Pg.450]    [Pg.639]    [Pg.28]    [Pg.31]    [Pg.638]    [Pg.445]    [Pg.21]    [Pg.140]    [Pg.221]    [Pg.95]    [Pg.202]    [Pg.221]    [Pg.363]    [Pg.65]    [Pg.574]    [Pg.160]    [Pg.78]    [Pg.211]    [Pg.98]    [Pg.230]    [Pg.249]    [Pg.205]    [Pg.42]    [Pg.1379]   


SEARCH



Hydroquinone

Hydroquinone reaction

Hydroquinones

© 2024 chempedia.info