Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolytic structure

The rapidly advancing applications of metal alkoxides for synthesis of ceramic materials by sol-gel/MOCVD (metallo-organic chemical vapour deposition) processes (Chapter 7) have more recently given a new impetus to intensive investigations on synthetic, reactivity (including hydrolytic), structural, and mass-spectroscopic aspects of oxo-alkoxide species. ... [Pg.3]

Although all the rings in Figure 1 contain six tt-electrons, the accumulation of electronegative nitrogen atoms in the polyaza structures leads to hydrolytic as well as thermal instability. This is noticeable in pyrimidine, and marked in the triazines and tetrazine. Some stability can be conferred by appropriate substitution, as we shall outline later. [Pg.2]

Diaziridines, discovered in 1958, six years after the oxaziridines, were almost immediately realized to be structural analogs of oxaziridines. Like these they showed oxidizing properties unexpected for other classes of organic nitrogen compound. Properties in common with oxaziridines include the rearrangement to open chain isomers on heating above 100 °C (for several diaziridines), and their hydrolytic behavior in acidic media, which leads to carbonyl compounds with conservation of the hetero-hetero bond. [Pg.212]

By virtue of their fused /3-lactam-thiazolidine ring structure, the penicillins behave as acylating agents of a reactivity comparable to carboxylic acid anhydrides (see Section 5.11.2.1). This reactivity is responsible for many of the properties of the penicillins, e.g. difficult isolation due to hydrolytic instability (B-49MI51102), antibacterial activity due to irreversible transpeptidase inhibition (Section 5.11.5.1), and antigen formation via reaction with protein molecules. [Pg.324]

Rider and Amott were able to produce notable improvements in bond durability in comparison with simple abrasion pre-treatments. In some cases, the pretreatment improved joint durability to the level observed with the phosphoric acid anodizing process. The development of aluminum platelet structure in the outer film region combined with the hydrolytic stability of adhesive bonds made to the epoxy silane appear to be critical in developing the bond durability observed. XPS was particularly useful in determining the composition of fracture surfaces after failure as a function of boiling-water treatment time. A key feature of the treatment is that the adherend surface prepared in the boiling water be treated by the silane solution directly afterwards. Given the adherend is still wet before immersion in silane solution, the potential for atmospheric contamination is avoided. Rider and Amott have previously shown that such exposure is detrimental to bond durability. [Pg.427]

Examples of Synthesis Routes Inherently Safer Than Others As summarized by Bodor (1995), the ethyl ester of DDT is highly effective as a pesticide and is not as toxic. The ester is hydrolytically sensitive and metabolizes to nontoxic products. The deliberate introduction of a structure into the molecule which facilitates hydrolytic deactivation of the molecule to a safer form can be a key to creating a chemical product with the desired pesticide effects but without the undesired environmental effects. This technique is being used extensively in the pharmaceutical industry. It is applicable to other chemical industries as well. [Pg.65]

From their structures, it appears that the hydrolytic stability of macrocyclic lactones must necessarily be inferior to macrocyclic polyethers. Ease of synthesis of the cyclic esters is therefore one of the aspects which commend them to interest. It is probably for this reason that such lactones have not been made more often by the interesting approach of Kdgel and Schroder . These workers report the ozonolysis of dibenzo-18-crown-6 in a mixture of methanol and dichloromethane at —20°. Reduction of the ozon-ide at —75° using dimethylsulfide followed by warming and addition of acetone led to formation of 6 in 14% yield. The bis-oxalate had mp 164—165° from acetone, very similar to that of the starting crown. The transformation is illustrated below in Eq. (5.9). [Pg.225]

Constitution. Hydrastine contains two methoxyl groups and a methylenedioxy-group, and behaves as a tertiary base. The first insight into the inner structure of the base was obtained when Freund and Will showed that with dilute nitric acid it undergoes hydrolytic oxidation, yielding opianic acid and a new base hydrastinine, CiiHigOgN. This reaction is analogous with the similar hydrolytic oxidation of narcotine (p. 201) to opianic acid and cotarnine and hydrastinine is allied to cotarnine and can be prepared from it. [Pg.163]

Trachelantamine, according to Syrneva, has a weak atropine-like action and also produces local anaesthesia. Its hydrolytic product, trache-lantamidine, which is structurally identical with tsoretronecanol, yields a p-aminobenzoyl derivative of -which the crystalline hydrochloride, m.p. 230-2°, is said to be as potent a local anaesthetic as cocaine hydrochloride. The chloro- -heliotridane (p. 606) formed by the aetion of thionyl ehloride on trachelantamidine reacts with 6-methoxy-8-aminoquinoline to form 6-methoxy-8-(pseMdoheliotridylamino)-quinoline,... [Pg.614]

Until recently, the catalytic role of Asp ° in trypsin and the other serine proteases had been surmised on the basis of its proximity to His in structures obtained from X-ray diffraction studies, but it had never been demonstrated with certainty in physical or chemical studies. As can be seen in Figure 16.17, Asp ° is buried at the active site and is normally inaccessible to chemical modifying reagents. In 1987, however, Charles Craik, William Rutter, and their colleagues used site-directed mutagenesis (see Chapter 13) to prepare a mutant trypsin with an asparagine in place of Asp °. This mutant trypsin possessed a hydrolytic activity with ester substrates only 1/10,000 that of native trypsin, demonstrating that Asp ° is indeed essential for catalysis and that its ability to immobilize and orient His is crucial to the function of the catalytic triad. [Pg.517]

Uncovering of the three dimentional structure of catalytic groups at the active site of an enzyme allows to theorize the catalytic mechanism, and the theory accelerates the designing of model systems. Examples of such enzymes are zinc ion containing carboxypeptidase A 1-5) and carbonic anhydrase6-11. There are many other zinc enzymes with a variety of catalytic functions. For example, alcohol dehydrogenase is also a zinc enzyme and the subject of intensive model studies. However, the topics of this review will be confined to the model studies of the former hydrolytic metallo-enzymes. [Pg.145]

In section 6.6.1, we described how enzymatic methods have come to dominate the production of the important intermediates used in the manufacture of semi-synthetic -lactams. In principle, the hydrolytic penicillin acylases may be used in the reverse direction to add acyl groups to 6-APA. For example, a two-step enzymatic process has been described for the preparation of ampiciilin (D-(-)-a-aminobenzylpenidllin structure shown in Figure 6.17). [Pg.178]

Polyesters are another important class of polyols. There are many polyester types used, so a generic structure is shown in Scheme 4.4. They are often based on adipic acid and either ethylene glycol (ethylene adipates) or 1,4-butanediol (butylene adipates). Polyesters, because of the polar carbonyl groups, contribute more to intermolecular forces, and physical properties such as tear and impact resistance are often improved by using them. They are also utilized for their solvent and acid resistance and light stability. Relatively poor hydrolytic stability is... [Pg.212]

Synthesis of hydrolytically stable siloxane-urethanes by the melt reaction of organo-hydroxy terminated siloxane oligomers with various diisocyanates have been reported i97,i98) -yhg polymers obtained by this route are reported to be soluble in cresol and displayed rubber-like properties. However the molecular weights obtained were not very high. A later report56) described the use of hydroxybutyl terminated disiloxanes in the synthesis of poly(urethane-siloxanes). No data on the characterization of the copolymers have been given. However, from our independent kinetic and synthetic studies on the same system 199), unfortunately, it is clear that these types of materials do not result in well defined multiphase copolymers. The use of low molecular weight hydroxypropyl-terminated siloxanes in the synthesis of siloxane-urethane type structures has also been reported 198). [Pg.40]

Siloxane containing interpenetrating networks (IPN) have also been synthesized and some properties were reported 59,354 356>. However, they have not received much attention. Preparation and characterization of IPNs based on PDMS-polystyrene 354), PDMS-poly(methyl methacrylate) 354), polysiloxane-epoxy systems 355) and PDMS-polyurethane 356) were described. These materials all displayed two-phase morphologies, but only minor improvements were obtained over the physical and mechanical properties of the parent materials. This may be due to the difficulties encountered in controlling the structure and morphology of these IPN systems. Siloxane modified polyamide, polyester, polyolefin and various polyurethane based IPN materials are commercially available 59). Incorporation of siloxanes into these systems was reported to increase the hydrolytic stability, surface release, electrical properties of the base polymers and also to reduce the surface wear and friction due to the lubricating action of PDMS chains 59). [Pg.62]

Another reason is that xylo-oligosaccharides of defined structure are very important substrates that serve as model compounds for the optimization of hydrolytic processes and in enzymic assays. The enormous development... [Pg.22]


See other pages where Hydrolytic structure is mentioned: [Pg.381]    [Pg.381]    [Pg.307]    [Pg.734]    [Pg.1047]    [Pg.5]    [Pg.319]    [Pg.843]    [Pg.411]    [Pg.158]    [Pg.3]    [Pg.295]    [Pg.525]    [Pg.692]    [Pg.693]    [Pg.710]    [Pg.1047]    [Pg.530]    [Pg.93]    [Pg.142]    [Pg.408]    [Pg.161]    [Pg.98]    [Pg.171]    [Pg.215]    [Pg.446]    [Pg.92]    [Pg.150]    [Pg.5]    [Pg.40]    [Pg.359]    [Pg.595]    [Pg.226]    [Pg.14]    [Pg.30]    [Pg.35]   
See also in sourсe #XX -- [ Pg.127 , Pg.128 , Pg.129 , Pg.130 , Pg.131 , Pg.132 , Pg.133 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 ]




SEARCH



Chemical structure, hydrolytic

Chemical structure, hydrolytic crosslinking

Chemical structure, hydrolytic degradation rate

Hydrolytic

Hydrolytic degradation structural modification

Hydrolytic structural stress

Structural and Property Changes During Hydrolytic Degradation

Structural modification, hydrolytic

Structural modification, hydrolytic improvements

Structural modification, hydrolytic mechanical properties

© 2024 chempedia.info