Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolytic constant

C. For two cations with the same valence, but one a stronger acid than the other (e.g., Cu2+ versus Ca2+), the cation with stronger acid behavior or higher hydrolytic constant would be preferred if the surface behaved as a relatively strong base. [Pg.208]

In the following table Denham s figures are given for the percentage hydrolysis of aniline hydrochloride, and the hydrolytic constant for a senes of dilutions—... [Pg.182]

Hydrolysis (hydrolytic) constant, Kh n. The equilibrium constant for a hydrolysis equilibrium. [Pg.507]

The equilibrium constant, known as the hydrolysis or hydrolytic constant,... [Pg.31]

Perhaps the most extensively studied catalytic reaction in acpreous solutions is the metal-ion catalysed hydrolysis of carboxylate esters, phosphate esters , phosphate diesters, amides and nittiles". Inspired by hydrolytic metalloenzymes, a multitude of different metal-ion complexes have been prepared and analysed with respect to their hydrolytic activity. Unfortunately, the exact mechanism by which these complexes operate is not completely clarified. The most important role of the catalyst is coordination of a hydroxide ion that is acting as a nucleophile. The extent of activation of tire substrate througji coordination to the Lewis-acidic metal centre is still unclear and probably varies from one substrate to another. For monodentate substrates this interaction is not very efficient. Only a few quantitative studies have been published. Chan et al. reported an equilibrium constant for coordination of the amide carbonyl group of... [Pg.46]

Sta.bilizers. Cyanuric acid is used to stabilize available chlorine derived from chlorine gas, hypochlorites or chloroisocyanurates against decomposition by sunlight. Cyanuric acid and its chlorinated derivatives form a complex ionic and hydrolytic equilibrium system consisting of ten isocyanurate species. The 12 isocyanurate equilibrium constants have been determined by potentiometric and spectrophotometric techniques (30). Other measurements of two of the equilibrium constants important in swimming-pool water report significantly different and/or less precise results than the above study (41—43). A critical review of these measurements is given in Reference 44. [Pg.301]

The main polymerization method is by hydrolytic polymerization or a combination of ring opening as in (3.11) and hydrolytic polymerization as in (3.12).5,7 9 11 28 The reaction of a carboxylic group with an amino group can be noncatalyzed and acid catalyzed. This is illustrated in the reaction scheme shown in Fig. 3.13. The kinetics of the hydrolytic polyamidation-type reaction has die form shown in (3.13). In aqueous solutions, die polycondensation can be described by second-order kinetics.29 Equation (3.13) can also be expressed as (3.14) in which B is die temperature-independent equilibrium constant and AHa the endialpy change of die reaction5 6 812 28 29 ... [Pg.150]

If the equilibrium constant is calculated with activity constants derived from Raoul s law instead of concentrations, then K is virtually independent of the water concentration.30 The reported values of AHa for hydrolytic polyamidation are in the order of 25-29 kJ mol-1.29 This means that on decreasing the temperature at a constant water concentration, the equilibrium molecular weight shifts to a higher value. [Pg.151]

Formation constants for complex species of mono-, di-, and trialkytin(rV) cations with some nucleotide-5 -monophosphates (AMP, LIMP, IMP, and GMP) are reported by De Stefano et al. The investigation was performed in the light of speciation of organometallic compounds in natural fluids (I = 0.16-1 moldm ). As expected, owing to the strong tendency of organotin(IV) cations to hydrolysis (as already was pointed above) in aqueous solution, the main species formed in the pH-range of interest of natural fluids are the hydrolytic ones. ... [Pg.384]

The hydrolytic depolymerisation of PETP in stirred potassium hydroxide solution was investigated. It was found that the depolymerisation reaction rate in a KOH solution was much more rapid than that in a neutral water solution. The correlation between the yield of product and the conversion of PETP showed that the main alkaline hydrolysis of PETP linkages was through a mechanism of chain-end scission. The result of kinetic analysis showed that the reaction rate was first order with respect to the concentration of KOH and to the concentration of PETP solids, respectively. This indicated that the ester linkages in PETP were hydrolysed sequentially. The activation energy for the depolymerisation of solid PETP in a KOH solution was 69 kJ/mol and the Arrhenius constant was 419 L/min/sq cm. 21 refs. [Pg.40]

Hydrolytic cleavage of the glycosidic bond holding the DNA bases to the sugar-phosphate backbone is typically a very slow process under physiological conditions (pH 7.4 37°C). Loss of the pyrimidine bases cytosine and thymine occurs with a rate constant of 1.5 X 10 s (ty2 = 14,700 years), while loss of the purine bases guanine and adenine proceeds slightly faster, with a rate constant of 3.0 X... [Pg.338]

This property of organophosphate esters may be of environmental importance since phosphoric acid diesters are much more soluble and very little is known concerning the environmental toxicity of these compounds. The available data do not provide sufficient descriptions of the experimental methods to determine if the rates are reliable (Barnard et al. 1961 Ciba-Geigy 1984e, 1986 Howard and Deo 1979 Mayer et al. 1981 Wolfe 1980). The majority of reports provide only a minimum of information and exclude important facts such as the duration of the experiments and the concentration of buffers. Despite the lack of experimental detail, published rate constants for base-catalyzed hydrolysis appear to be reasonably consistent and suggest that the hydrolytic half-life of triphenyl phosphate will vary from... [Pg.302]

FIGURE 7.16 (A) Photocurrents of salamander rod cells following light flashes giving between 10 and 2000 rhodopsin molecule isomerizations. (B) Calculated increments in phosphodiesterase hydrolytic rate constant. (From Lamb, T. D. and Pugh, Jr., E. N., Trends Neurosci., 15, 291-299, 1992. With permission.)... [Pg.233]

Metal ion-catalyzed hydrolytic processes have been studied for a long time, and many interesting systems have been explored which give valuable information about catalysis. However, with very few exceptions the catalysis afforded by these systems in water is disappointing when compared with enzymatic systems where a metal ion cofactor activates a substrate and a nucleophilic or basic group in an acyl or phos-phoryl transfer process. It has been noted that bulk water may not be a good medium to approximate the medium inside the active site of an enzyme where it is now known that the effective dielectric constants resemble those of organic solvents rather than water. [Pg.324]

The three rate constants for Eq. (98) correspond to the acid-catalyzed, the acid-independent and the hydrolytic paths of the dimer-monomer equilibrium, respectively, and were evaluated independently (107). The results clearly demonstrate that the complexity of the kinetic processes is due to the interplay of the hydrolytic and the complex-formation steps and is not a consequence of electron transfer reactions. In fact, the first-order decomposition of the FeS03 complex is the only redox step which contributes to the overall kinetic profiles, because subsequent reactions with the sulfite ion radical and other intermediates are considerably faster. The presence of dioxygen did not affect the kinetic traces when a large excess of the metal ion is present, confirming that either the formation of the SO5 radical (Eq. (91)) is suppressed by reaction (101), or the reactions of Fe(II) with SO and HSO5 are preferred over those of HSO3 as was predicted by Warneck and Ziajka (86). Recently, first-order formation of iron(II) was confirmed in this system (108), which supports the first possibility cited, though the other alternative can also be feasible under certain circumstances. [Pg.437]

Conditional stability constants have been determined for cadmium binding to humic acid in freshwater, log Kk 6.5 [27], which may be comparable to binding to humic acid coated particles. The experiments demonstrated the importance of cadmium uptake from particles rather than from the dissolved phase. The authors recognised that the overall conclusion was similar to previous studies [28], but there remain inconsistencies in the uptake levels which may be related to the heterogeneity of the systems. Uptake from the intestine into the mucosal cells was not investigated. It was presumed that the material was digested extracellularly by hydrolytic enzymes and the released metal was taken up by facilitated diffusion. [Pg.366]


See other pages where Hydrolytic constant is mentioned: [Pg.186]    [Pg.377]    [Pg.417]    [Pg.169]    [Pg.182]    [Pg.217]    [Pg.186]    [Pg.377]    [Pg.417]    [Pg.169]    [Pg.182]    [Pg.217]    [Pg.374]    [Pg.704]    [Pg.410]    [Pg.95]    [Pg.539]    [Pg.74]    [Pg.234]    [Pg.386]    [Pg.393]    [Pg.345]    [Pg.257]    [Pg.458]    [Pg.25]    [Pg.60]    [Pg.443]    [Pg.167]    [Pg.256]    [Pg.480]    [Pg.516]    [Pg.224]    [Pg.271]    [Pg.273]    [Pg.324]    [Pg.98]    [Pg.131]    [Pg.139]    [Pg.719]   


SEARCH



Hydrolytic

Hydrolytic rate constant

© 2024 chempedia.info