Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis precursor

M.p. 140°C. An amino-acid occasionally formed in the hydrolysis products of proteins and occurring in the urine of some birds as dibenzoylornithine. Ornithine is a precursor of arginine in plants, animals and bacteria. [Pg.290]

Displacement reactions with oxygen nucleophiles are of potential commercial interest. Alkaline hydrolysis provides 2-fluoro-6-hydroxypyridine [55758-32-2], a precursor to 6-fluoropyridyl phosphoms ester insecticides (410—412). Other oxygen nucleophiles such as bisphenol A and hydroquinone have been used to form aryl—pyridine copolymers (413). [Pg.336]

Aromatics containing electron releasing groups such as phenols, dim ethyl am in oben 2en e and indole are formylated by 2-ethoxy-l,3-dithiolane in the presence of boron trifluoroetherate, followed by hydrolysis (114). The preformed dithiolanium tetrafluoroborate also undergoes Friedel-Crafts reaction with aromatics such as dim ethyl am in oben 2en e and indole (115), and was used to generate dithiolanium derivatives (formyl precursors) from the enoltrimethylsilyl ether derivatives (116). [Pg.559]

Hydrolysis of aluminum alkoxides is also used commercially to produce precursor gels. This approach avoids the introduction of undesirable anions or cations so that the need for extensive washing is reduced. Although gels having surface area over 800 m /g can be produced by this approach, the commercial products are mosdy pseudoboehmite powders in the 200 —300 m /g range (28). The forming processes already described are used to convert these powders into activated alumina shapes. [Pg.156]

These precursors are prepared by reaction of fuming nitric acid in excess acetic anhydride at low temperatures with 2-furancarboxaldehyde [98-01-1] (furfural) or its diacetate (16) followed by treatment of an intermediate 2-acetoxy-2,5-dihydrofuran [63848-92-0] with pyridine (17). This process has been improved by the use of concentrated nitric acid (18,19), as well as catalytic amounts of phosphoms pentoxide, trichloride, and oxychloride (20), and sulfuric acid (21). Orthophosphoric acid, -toluenesulfonic acid, arsenic acid, boric acid, and stibonic acid, among others are useful additives for the nitration of furfural with acetyl nitrate. Hydrolysis of 5-nitro-2-furancarboxyaldehyde diacetate [92-55-7] with aqueous mineral acids provides the aldehyde which is suitable for use without additional purification. [Pg.460]

The production of vitreous siUca from chemical precursors was first described in patents filed in 1934, including a fabrication method in which fine, high purity powders were produced by decomposing silanes (39). Forms were then cast from aqueous sHps. More importantiy, a dame hydrolysis process which used SiCl as the chemical precursor was described (40). This latter approach led to a marked improvement in glass purity and served as the basis for the processes used in the 1990s to make synthetic vitreous siUca. [Pg.499]

In the typical flame or vapor-phase hydrolysis process, which uses SiCfy as the precursor, sihcon tetrachloride vapor is fed into a flame using an oxygen carrier gas. Fine (<50 nm), amorphous sihca particles form in the flame (57). [Pg.499]

Overview. Three approaches are used to make most sol—gel products method 1 involves gelation of a dispersion of colloidal particles method 2 employs hydrolysis and polycondensation of alkoxide or metal salts precursors followed by supercritical drying of gels and method 3 involves hydrolysis and polycondensation of alkoxide precursors followed by aging and drying under ambient atmospheres. [Pg.249]

Production of net-shape siUca (qv) components serves as an example of sol—gel processing methods. A siUca gel may be formed by network growth from an array of discrete coUoidal particles (method 1) or by formation of an intercoimected three-dimensional network by the simultaneous hydrolysis and polycondensation of a chemical precursor (methods 2 and 3). When the pore Hquid is removed as a gas phase from the intercoimected soHd gel network under supercritical conditions (critical-point drying, method 2), the soHd network does not coUapse and a low density aerogel is produced. Aerogels can have pore volumes as large as 98% and densities as low as 80 kg/m (12,19). [Pg.249]

Polytitanosiloxane (PTS) polymers containing Si—O—Ti linkages have also been synthesized through hydrolysis—polycondensation or hydrolysis—polycondensation—pyrolysis reactions involving clear precursor sol solutions consisting of monomeric silanes, TYZOR TET, methanol, water, and hydrochloric acid (Fig. 2). These PTS polymers could be used to form excellent corrosion protection coatings on aluminum substrates (171). [Pg.152]

Other approaches to (36) make use of (37, R = CH ) and reaction with a tributylstannyl allene (60) or 3-siloxypentadiene (61). A chemicoen2ymatic synthesis for both thienamycia (2) and 1 -methyl analogues starts from the chiral monoester (38), derived by enzymatic hydrolysis of the dimethyl ester, and proceeding by way of the P-lactam (39, R = H or CH ) (62,63). (3)-Methyl-3-hydroxy-2-methylpropanoate [80657-57-4] (40), C H qO, has also been used as starting material for (36) (64), whereas 1,3-dipolar cycloaddition of a chiral nitrone with a crotonate ester affords the oxa2ohdine (41) which again can be converted to a suitable P-lactam precursor (65). [Pg.8]

Neutralization to terrninate processing was effected by the polymeric acid layer of the covet sheet the onset of this reaction was controlled by the rate of permeation of the overlying polymeric timing layers. MobiUty of the transferred dyes was also reduced by reaction with a mordant contained in the image-receiving layer. A development inhibitor released from one of the timing layers by the alkaline hydrolysis of its precursor assisted in restraining further development and consequent additional dye release. [Pg.503]

Coppet(II) oxide [1317-38-0] CuO, is found in nature as the black triclinic tenorite [1317-92-6] or the cubic or tetrahedral paramelaconite [71276-37 ]. Commercially available copper(II) oxide is generally black and dense although a brown material of low bulk density can be prepared by decomposition of the carbonate or hydroxide at around 300°C, or by the hydrolysis of hot copper salt solutions with sodium hydroxide. The black product of commerce is most often prepared by evaporation of Cu(NH2)4C02 solutions (35) or by precipitation of copper(II) oxide from hot ammonia solutions by addition of sodium hydroxide. An extremely fine (10—20 nm) copper(II) oxide has been prepared for use as a precursor in superconductors (36). [Pg.254]

Compared to its precursor (HNCO), CA is unusually stable to hydrolysis. It is only slowly hydroly2ed by hot aqueous alkaU and virtually iuert to acidic hydrolysis. Indeed, CA can be heated under pressure iu sulfuric acid solution at 200°C with minimal decomposition. The tria2iae ring, however, can be cleaved by alkaline hypochlorite forming N2 and HCO3 (17). [Pg.418]

Pyrimido[4,5- f]pyrimidines may be used as pyrimidine precursors. Thus, the dihydro derivative (736) undergoes alkaline hydrolysis to the amide (737 R = PrCO) which may be deacylated in ethanolic hydrogen chloride to give 5-aminomethyl-2-propylpyrimidin-4-amine (737 R = H) (64CPB393) rather similarly, the pyrimidopyrimidinedione (738) reacts with amines to give, for example, 6-amino-5-benzyliminomethyl-l,3-dimethylpyrimidine-2,4(lFf,3Ff)-dione (739 R = CH2Ph) or the hydrazone (739 R = NH2) (74JCS(Pl)1812). [Pg.122]

NaN02, 1 N HCl, CH3OH, H2O, 0°, 3 h, 76% yield. In the last step of a synthesis of erythronolide A, acid-catalyzed hydrolysis of an acetonide failed because the carbonyl-containing precursor was unstable to acidic hydrolysis (3% MeOH, HCl, 0°, 30 min, conditions developed for the synthesis of erythronolide B). Consequently the carbonyl group was protected... [Pg.214]

In the latter case, one end of the glycol is protected as its tetrahydropyranyl ether. Upon hydrolysis, a two-armed crown is revealed which may then be treated with the bis-crown precursor identified above. The result will be a tris-crown system and the approach is illustrated below in Eq. (3.35). [Pg.38]


See other pages where Hydrolysis precursor is mentioned: [Pg.305]    [Pg.339]    [Pg.349]    [Pg.2]    [Pg.6]    [Pg.253]    [Pg.326]    [Pg.386]    [Pg.311]    [Pg.499]    [Pg.24]    [Pg.38]    [Pg.248]    [Pg.34]    [Pg.529]    [Pg.152]    [Pg.91]    [Pg.343]    [Pg.32]    [Pg.103]    [Pg.148]    [Pg.334]    [Pg.346]    [Pg.346]    [Pg.133]    [Pg.290]    [Pg.292]    [Pg.72]    [Pg.258]    [Pg.258]    [Pg.258]    [Pg.435]    [Pg.179]    [Pg.690]   
See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Hydrolysis of fructose and glucose precursors

Hydrolysis of silica sol-gel precursors

Precursors acid-catalysed hydrolysis

© 2024 chempedia.info