Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis kinetic resolution, lipases

In this case study, an enzymatic hydrolysis reaction, the racemic ibuprofen ester, i.e. (R)-and (S)-ibuprofen esters in equimolar mixture, undergoes a kinetic resolution in a biphasic enzymatic membrane reactor (EMR). In kinetic resolution, the two enantiomers react at different rates lipase originated from Candida rugosa shows a greater stereopreference towards the (S)-enantiomer. The membrane module consisted of multiple bundles of polymeric hydrophilic hollow fibre. The membrane separated the two immiscible phases, i.e. organic in the shell side and aqueous in the lumen. Racemic substrate in the organic phase reacted with immobilised enzyme on the membrane where the hydrolysis reaction took place, and the product (S)-ibuprofen acid was extracted into the aqueous phase. [Pg.130]

Esterases have a catalytic function and mechanism similar to those of lipases, but some structural aspects and the nature of substrates differ [4]. One can expect that the lessons learned from the directed evolution of lipases also apply to esterases. However, few efforts have been made in the directed evolution of enantioselective esterases, although previous work by Arnold had shown that the activity of esterases as catalysts in the hydrolysis of achiral esters can be enhanced [49]. An example regarding enantioselectivity involves the hydrolytic kinetic resolution of racemic esters catalyzed by Pseudomonasfluorescens esterase (PFE) [50]. Using a mutator strain and by screening very small libraries, low improvement in enantioselectivity was... [Pg.38]

Orthoformates have been used in the lipase-catalyzed esterification aimed at the kinetic resolution of racemic acids such as flurbiprofen, a nonsteroidal anti-inflammatory drug (Figure 6.18). Orthoformates trap the water as it is formed through hydrolysis, and therefore prevent the reverse reaction, and, at the same time, provide the alcohol for the esteriflcation [65]. [Pg.141]

Searching for a method of synthesis of enantiopure lamivudine 1, the compound having a monothioacetal stereogenic centre, Rayner et al. investigated a lipase-catalysed hydrolysis of various racemic a-acetoxysulfides 2. They found out that the reaction was both chemoselective (only the acetate group was hydrolysed with no detectable hydrolysis of the other ester moieties) and stereoselective. As a result of the kinetic resolution, enantiomerically enriched unreacted starting compounds were obtained. However, the hydrolysis products 3 were lost due to decomposition." In this way, the product yields could not exceed 50% (Equation 1). The product 2 (R = CH2CH(OEt)2) was finally transformed into lamivudine 1 and its 4-epimer. ... [Pg.160]

Catalytic sol-gel lipase immobilizates were rapidly commercialized (by Fluka) after their invention in 1995 because of their remarkably stable activity in esterification reactions (and also in the kinetic resolution of chiral alcohols and amines) along with unique stability (residual activity of 70% even after 20 reaction cycles is common). The original procedure for the encapsulation produced by the fluoride-catalysed hydrolysis of mixtures of RSi(OCH3)3 and Si(OCH3)4 has been improved... [Pg.132]

The one-pot dynamic kinetic resolution (DKR) of ( )-l-phenylethanol lipase esterification in the presence of zeolite beta followed by saponification leads to (R)-l phenylethanol in 70 % isolated yield at a multi-gram scale. The DKR consists of two parallel reactions kinetic resolution by transesterification with an immobilized biocatalyst (lipase B from Candida antarctica) and in situ racemization over a zeolite beta (Si/Al = 150). With vinyl octanoate as the acyl donor, the desired ester of (R)-l-phenylethanol was obtained with a yield of 80 % and an ee of 98 %. The chiral secondary alcohol can be regenerated from the ester without loss of optical purity. The advantages of this method are that it uses a single liquid phase and both catalysts are solids which can be easily removed by filtration. This makes the method suitable for scale-up. The examples given here describe the multi-gram synthesis of (R)-l-phenylethyl octanoate and the hydrolysis of the ester to obtain pure (R)-l-phenylethanol. [Pg.133]

The above-mentioned facts have important consequences on the stereochemical outcome of the kinetic resolution of asymmetrically substituted epoxides. In the majority of kinetic resolutions of esters (e.g. by ester hydrolysis and synthesis using lipases, esterases and proteases) the absolute configuration at the stereogenic centre(s) always remains the same throughout the reaction. In contrast, the enzymatic hydrolysis of epoxides may take place via attack on either carbon of the oxirane ring (Scheme 7) and it is the structure of the substrate and of the enzyme involved which determine the regioselec-tivity of the attack [53, 58-611. As a consequence, the absolute configuration of both the product and substrate from a kinetic resolution of a racemic... [Pg.151]

One of the first fluorescence-based ee assays uses umbelliferone (14) as the built-in fluorophore and works for several different types of enzymatic reactions 70,86). In an initial investigation, the system was used to monitor the hydrolytic kinetic resolution of chiral acetates (e.g., rac-11) (Fig. 8). It is based on a sequence of two coupled enzymatic steps that converts a pair of enantiomeric alcohols formed by the asymmetric hydrolysis under study (e.g., R - and (5)-12) into a fluorescent product (e.g., 14). In the first step, (R)- and (5)-ll are subjected separately to hydrolysis in reactions catalyzed by a mutant enzyme (lipase or esterase). The goal of the assay is to measure the enantioselectivity of this kinetic resolution. The relative amount of R)- and ( S)-12 produced after a given reaction time is a measure of the enantioselectivity and can be ascertained rapidly, but not directly. [Pg.18]

Kinetic resolutions by means of the selective formation or hydrolysis of an ester group in enzyme-catalyzed reactions proved to be a successful strategy in the enantioseparation of 1,3-oxazine derivatives. Hydrolysis of the racemic laurate ester 275 in the presence of lipase QL resulted in formation of the enantiomerically pure alcohol derivative 276 besides the (23, 3R)-enantiomer of the unreacted ester 275 (Equation 25) <1996TA1241 >. The porcine pancreatic lipase-catalyzed acylation of 3-(tu-hydroxyalkyl)-4-substituted-3,4-dihydro-2/7-l,3-oxazines with vinyl acetate in tetrahydrofuran (THF) took place in an enantioselective fashion, despite the considerable distance of the acylated hydroxy group and the asymmetric center of the molecule <2001PAC167, 2003IJB1958>. [Pg.410]

Classic resolntion has been performed by formation of diastereomeiic salts which could be separated. In a series of synthetic steps and when resolution is one step, it is of utmost importance that the correct chirality is introduced at an early stage. When a racemate is subject to enzyme catalysis, one enantiomer reacts faster than the other and this leads to kinetic resolution (Figure 2.2c). Results of hydrolysis using lipase B from Candida antarctica (CALB) and a range of C-3 secondary butanoates are shown in Table 2.1. [Pg.29]

Lipase-catalysed esterification instead of ester hydrolysis is also being used, a.o. by Glaxo Wellcome for a kinetic resolution that yields (IS, 2. -tranx-2-methoxycyelo-... [Pg.150]

Enzymes such as pig liver esterase have been successfully applied in enantioselective hydrolysis of allenyl esters on a scale of 2 mmoles131. This provides the enantiomerically enriched allene-carboxylic acid as well as the ester of opposite configuration, by what is in fact a catalytic kinetic resolution (6-90% oy). Conversely, partial enantioselective esterification of /1-hydroxy-allenes (3-72% oy) employing lipases has been reported132,133. [Pg.563]

Optically Active Acids ami Esters. Enannoselcctive hydrolysis of esters of simple alcohols is a common method for the production of pure enantiomers of esters or Ihe corresponding acids. Lipases, esterases, and proteases accept a wide variety of esters and convert them to the corresponding acids, often in a highly cnantiosclectivc manner. Lipasc-cutulyzed kinetic resolutions are often practical for the preparation of optically active pharmaceuticals. [Pg.575]

Because the ester hydrolysis leads to a change in acidity, as in hydrolytic lipase-or esterase-catalyzed kinetic resolution, an appropriate pH indicator can be used for quantification [14,15]). In an optimized version (Kazlauskas test) [15], a linear correlation between the amount of acid generated and the degree of protonation of the indicator was ensured by using a buffer (e. g., iV,iV-bis(2-hydroxyethyl)-2-(aminoethanesulfonic acid) (= BES), and a pH indicator (e. g., / -nitrophenol) having the same pKa value. The advantage of this system relates to the fact that p-nitrophenol esters are not necessary, i. e., normal substrates such as methyl esters 10 can be used. [Pg.130]

In order to reduce the time needed to perform a complete kinetic resolution Lindner et al53 reported the use of the allylic alcohol 30 in enantiomerically enriched form rather than a racemic mixture in kinetic resolution. Thus, the kinetic resolution of 30 was performed starting from the enantiomerically enriched alcohol (R) or (S)-30 (45%) ee obtained by the ruthenium-catalyzed asymmetric reduction of 32 with the aim to reach 100 % ee in a consecutive approach. Several lipases were screened in resolving the enantiomerically enriched 30 either in the enantioselective transesterification of (<5)-30 (45% ee) using isopropenyl acetate as an acyl donor in toluene in non-aqueous medium or in the enantioselective hydrolysis of the corresponding acetate (R)-31, (45% ee) using a phosphate buffer (pH = 6) in aqueous medium. An E value of 300 was observed and the reaction was terminated after 3 h yielding (<5)-30 > 99% ee and the ester (R)-31 was recovered with 86% ee determined by capillary GC after 50 % conversion. [Pg.208]

Joly et al71 reported the use of Candida cylindracea lipase in the kinetic resolution of aryl-substituted /J-hydroxy ketones 44 using either the transeterification of the free /j-hydroxy ketone with vinyl acetate or the hydrolysis of its acetate. The transesterification mode afforded the alcohol with 30-70 % ee and the acetate with > 96% ee. That of hydrolysis afforded the alcohol with 64-93 % ee and the acetate with > 96% ee. [Pg.211]

Kurokawa et al81 reported the enzyme-catalyzed kinetic resolution of racemic N-carbamoyl, A-Boc, N-Cbz proline esters and prolinols using protease and Candida antarctica lipase B. The latter was efficient in the enantioselctive hydrolysis of both N-Boc and N-Cbz proline derivatives with E > 100. [Pg.214]

Scientists from Bristol-Myers Squibb developed a new side chain for Taxol, making it water-soluble. A kinetic resolution with Pseudomonas cepacia lipase (lipase PS-30 from Amano) was applied to obtain the desired material enantiopure (Scheme 6.10). After the lipase-catalysed hydrolysis of the wrong enantiomer (49% conversion) the ester was obtained with an ee of >99%. Separation and subsequent chemical cleavage of the ester yielded the desired enantiomer of the lactame, which could then be coupled to baccatin III [44]. [Pg.272]

In general the hydrolysis of amides is performed as a kinetic resolution and not as a dynamic kinetic resolution. It is applied industrially [96] but in most cases the industrial kinetic resolution of amines, as performed for instance by BASF, is an acylation of racemic amines [38], rather than the hydrolysis of racemic amides. For the acylation of amines many different acyl donors [27] and enzymes can be used, including lipases (or a review see [97]). [Pg.285]

Another important difference between (dynamic) kinetic resolution of alcohols and amines is the ease with which the acylated product, an ester and an amide, respectively, is hydrolyzed. This is necessary in order to recover the substrate enantiomer which has undergone acylation. Ester hydrolysis is generally a facile process but amide hydrolysis, in contrast, is often not trivial. For example, in the BASF process [28] for amine resolution by lipase-catalyzed acylation the amide product is hydrolyzed using NaOH in aq. ethylene glycol at 150 °C (Fig. 9.18). In the case of phenethylamine this does not present a problem but it will obviously lead to problems with a variety of amines containing other functional groups. [Pg.398]

Lipases are the most frequently used enzymes in organic chemistry, catalyzing the hydrolysis of carboxylic acid esters or the reverse reaction in organic solvents [3,5,34,70]. The first example of directed evolution of an enantioselective enzyme according to the principle outlined in Fig. 11.2 concerns the hydrolytic kinetic resolution of the chiral ester 9 catalyzed by the bacterial lipase from Pseudomonas aeruginosa [8], This enzyme is composed of 285 amino acids [32]. It is an active catalyst for the model reaction, but enantioselectivity is poor (ee 5 % in favor of the (S)-acid 10 at about 50 % conversion) (Fig. 11.10) [71]. The selectivity factor E, which reflects the relative rate of the reactions of the (S)- and (R)-substrates, is only 1.1. [Pg.257]

In a different ongoing study, a Bacillus subtilis lipase has been chosen as the catalyst in the asymmetric hydrolysis of the meso-diacetate 11 with formation of enantiomeric alcohols 12 (Fig. 11.19) [82]. This reaction does not constitute kinetic resolution and can thus be carried out to 100 % conversion. Screening is possible on the basis of the ESI-MS system [50] (see above) using the deuterium labeled pseudo-meso substrate 13 (Fig. 11.20). The ratio of the two pseudo-enantiomeric products 14 and 15 can easily be determined by integrating the two appropriate MS peaks. [Pg.269]

There are many reports of enzymatic catalysis in scC02 performing hydrolysis, oxidations, esterifications, and franr-esterification reactions. For example, the enzymatic kinetic resolution of 1-phenylethanol with vinyl acetate in scC02 using lipase from Candida antarctica B produces (R)-l-phenyethylacetate in >99% ee (i.e., enantiomeric excess, a measure of how much of one enantiomer is present as compared to the other), as shown in Figure 12.20. [Pg.314]

Figure 7.2 The structure of the faster reacting enantiomer in lipase-catalyzed esterification in kinetic resolution of racemic secondary alcohols or hydrolysis of the corresponding esters. Small and large refer to the relative size of the groups and not to the R/S notation. Figure 7.2 The structure of the faster reacting enantiomer in lipase-catalyzed esterification in kinetic resolution of racemic secondary alcohols or hydrolysis of the corresponding esters. Small and large refer to the relative size of the groups and not to the R/S notation.

See other pages where Hydrolysis kinetic resolution, lipases is mentioned: [Pg.59]    [Pg.167]    [Pg.28]    [Pg.165]    [Pg.167]    [Pg.452]    [Pg.329]    [Pg.24]    [Pg.31]    [Pg.69]    [Pg.181]    [Pg.123]    [Pg.16]    [Pg.129]    [Pg.167]    [Pg.16]    [Pg.333]    [Pg.10]    [Pg.11]    [Pg.220]    [Pg.179]    [Pg.9]    [Pg.343]    [Pg.325]    [Pg.266]    [Pg.14]   
See also in sourсe #XX -- [ Pg.378 ]




SEARCH



Kinetic hydrolysis

Lipase hydrolysis

Lipases kinetic resolution

© 2024 chempedia.info