Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipases kinetic resolution

Procedure 2 Lipase Kinetic Resolution of 4,4-Diethoxy-l-nitrobutan-2-ol... [Pg.208]

Lipase-catalyzed kinetic resolutions are often practical for the preparation of optically active pharmaceuticals (61). For example, suprofen [40828-46-4] (45), which is a nonsteroidal antiinflamatory dmg, can be resolved by Candida glindracea]i 2Lse in >95% ee at 49% conversion (61). Moreover, hpase-based processes for the resolution of naproxen [22204-53-1] and ibuprofen [15687-27-1] (61) have also been developed. [Pg.338]

In this case study, an enzymatic hydrolysis reaction, the racemic ibuprofen ester, i.e. (R)-and (S)-ibuprofen esters in equimolar mixture, undergoes a kinetic resolution in a biphasic enzymatic membrane reactor (EMR). In kinetic resolution, the two enantiomers react at different rates lipase originated from Candida rugosa shows a greater stereopreference towards the (S)-enantiomer. The membrane module consisted of multiple bundles of polymeric hydrophilic hollow fibre. The membrane separated the two immiscible phases, i.e. organic in the shell side and aqueous in the lumen. Racemic substrate in the organic phase reacted with immobilised enzyme on the membrane where the hydrolysis reaction took place, and the product (S)-ibuprofen acid was extracted into the aqueous phase. [Pg.130]

The plotting of Dixon plot and its slope re-plot (see 5.9.5.9) is a commonly used graphical method for verification of kinetics mechanisms in a particular enzymatic reaction.9 The proposed kinetic mechanism for the system is valid if the experimental data fit the rate equation given by (5.9.4.4). In this attempt, different sets of experimental data for kinetic resolution of racemic ibuprofen ester by immobilised lipase in EMR were fitted into the rate equation of (5.7.5.6). The Dixon plot is presented in Figure 5.22. [Pg.138]

Table 1.5 I nfluence ofthe organic solvent on the enantioselectivity of the lipase PS (from Pseudomonas species) in the kinetic resolution of racemic trans-sobrerol (10). Table 1.5 I nfluence ofthe organic solvent on the enantioselectivity of the lipase PS (from Pseudomonas species) in the kinetic resolution of racemic trans-sobrerol (10).
Lipases from C. antarctica and P. cepacia showed higher enantioselectivity in the two ionic liquids l-ethyl-3-methylimidazolium tetrafluoroborate and l-butyl-3-methylimidazolium hexafluoroborate than in THE and toluene, in the kinetic resolution of several secondary alcohols [49]. Similarly, with lipases from Pseudomonas species and Alcaligenes species, increased enantioselectivity was observed in the resolution of 1 -phenylethanol in several ionic liquids as compared to methyl tert-butyl ether [50]. Another study has demonstrated that lipase from Candida rugosa is at least 100% more selective in l-butyl-3-methylimidazolium hexafluoroborate and l-octyl-3-nonylimidazolium hexafluorophosphate than in n-hexane, in the resolution of racemic 2-chloro-propanoic acid [51]. [Pg.15]

The kinetic resolution of rac-1 was chosen as a model reaction using the WT lipase from PAL as the catalyst [6]. The WT shows a very low selectivity factor E = 1.1 in slight favor of (S)-2 (Scheme 2.1). [Pg.28]

Figure 2.9 Schematic summary of the directed evolution of enantioselective lipase variants originating from the WT PAL used as catalysts in the hydrolytic kinetic resolution of ester rac-1. CMCM = Combinatorial multiple-cassette mutagenesis [8c,22],... Figure 2.9 Schematic summary of the directed evolution of enantioselective lipase variants originating from the WT PAL used as catalysts in the hydrolytic kinetic resolution of ester rac-1. CMCM = Combinatorial multiple-cassette mutagenesis [8c,22],...
Esterases have a catalytic function and mechanism similar to those of lipases, but some structural aspects and the nature of substrates differ [4]. One can expect that the lessons learned from the directed evolution of lipases also apply to esterases. However, few efforts have been made in the directed evolution of enantioselective esterases, although previous work by Arnold had shown that the activity of esterases as catalysts in the hydrolysis of achiral esters can be enhanced [49]. An example regarding enantioselectivity involves the hydrolytic kinetic resolution of racemic esters catalyzed by Pseudomonasfluorescens esterase (PFE) [50]. Using a mutator strain and by screening very small libraries, low improvement in enantioselectivity was... [Pg.38]

Orthoformates have been used in the lipase-catalyzed esterification aimed at the kinetic resolution of racemic acids such as flurbiprofen, a nonsteroidal anti-inflammatory drug (Figure 6.18). Orthoformates trap the water as it is formed through hydrolysis, and therefore prevent the reverse reaction, and, at the same time, provide the alcohol for the esteriflcation [65]. [Pg.141]

Figure 6.42 Lipase-catalyzed kinetic resolution of a p-lactam. Figure 6.42 Lipase-catalyzed kinetic resolution of a p-lactam.
Ogasawara and coworkers reported a concise route to (—)-kainic acid (Figure 6.51), an excitatory neurotransmitter of marine origin, via a lipase-mediated kinetic resolution of an N-Cbz aminocyclopentenol [139]. More recently, (—)-kainic acid was synthesized from an optically active butenolide prepared by enzymatic DKR [140]. [Pg.153]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

Scheme 7.26 Kinetic resolution and DKR of 1-methyl tetrahydro-isoquinoline using Candida rugosa lipase. Scheme 7.26 Kinetic resolution and DKR of 1-methyl tetrahydro-isoquinoline using Candida rugosa lipase.
Biooxidative deracemization of racemic sec-alcohols to single enantiomers [47,48] is complementary to combined metal-assisted lipase-mediated strategies [49,50]. In general, deracemization can be realized by either an enantioconvergent, a dynamic kinetic resolution, or a stereoinversion process. The latter concept is particularly appealing, as only half of the substrate needs to be converted, as the remaining half already represents the product with correct stereochemistry. [Pg.235]

Recently, an interesting example of the enzymatic kinetic resolution of a-acetoxyamide 8 was demonstrated using native wheat germ lipase and immobilized lipase PS (AMANO) (Scheme 5.6). [Pg.100]

The outstanding influence of the anionic component on the activity and selectivity of enzymes was demonstrated in the Candida rugosa lipase-catalyzed kinetic resolution of ibuprofen, a nonsteroidal antiinflammatory drug with sales of USD 183 million in 2006 (Scheme 5.15) [63]. [Pg.107]

Kim and co-workers recently reported an excellent example of dynamic kinetic resolution (DKR) using lipase-ruthenium combo catalyst in an IE solvent system (Fig. 7). Applied to this protocol, the authors succeeded in preparing (R)-ester or (5 )-ester using lipase PS or subtilisin, respectively. An IE solvent system is truly appropriate for DKR because racemizafion takes place easily in a highly polar solvent. [Pg.9]

FINDING OF THE LOW-TEMPERATURE METHOD IN THE LIPASE-CATALYZED KINETIC RESOLUTION... [Pg.22]

Temperature effect in the lipase-catalyzed kinetic resolution of solketal... [Pg.29]

Optically active 5-(hydroxymethyl)-3-phenyl-2-isoxazoline 13 is a versatile key intermediate for the syntheses of /3-hydroxy ketones, y-amino alcohols,and y-amino acids. However, the Upase-catalyzed kinetic resolution of isoxazoline ( )-13 has not been reported so far probably because of the low enantioselectivity expected for primary alcohols (Scheme 3). The enantioselectivity was found to be very low E value = 4-5 in /-Pr20) at room temperature however, it could be markedly improved up to an value of 249 at —60°C by using lipase PS-C 11 in acetone, which was the best solvent among those tested (THF, /-Pt20) 1 )-... [Pg.36]

The low-temperature method is effective not only in the kinetic resolution of alcohols but also in the enantioface-selective asymmetric protonation of enol acetate of 2-methylcyclohexanone (15) giving (f )-2-methylcyclohexanone (16). The reaction in H2O at 30°C gave 28% ee (98% conv.), which was improved up to 77% ee (82% conv.) by the reaction using hpase PS-C 11 in /-Pt20 and ethanol at 0°C. Acceleration of the reaction with lipase PS-C 11 made this reaction possible because this reaction required a long reaction time. The temperature effect is shown in Fig. 14. The regular temperature effect was not observed. The protons may be supplied from H2O, methanol, or ethanol, whose bulkiness is important. [Pg.37]

Searching for a method of synthesis of enantiopure lamivudine 1, the compound having a monothioacetal stereogenic centre, Rayner et al. investigated a lipase-catalysed hydrolysis of various racemic a-acetoxysulfides 2. They found out that the reaction was both chemoselective (only the acetate group was hydrolysed with no detectable hydrolysis of the other ester moieties) and stereoselective. As a result of the kinetic resolution, enantiomerically enriched unreacted starting compounds were obtained. However, the hydrolysis products 3 were lost due to decomposition." In this way, the product yields could not exceed 50% (Equation 1). The product 2 (R = CH2CH(OEt)2) was finally transformed into lamivudine 1 and its 4-epimer. ... [Pg.160]

Another approach to the synthesis of chiral non-racemic hydroxyalkyl sulfones used enzyme-catalysed kinetic resolution of racemic substrates. In the first attempt. Porcine pancreas lipase was applied to acylate racemic (3, y and 8-hydroxyalkyl sulfones using trichloroethyl butyrate. Although both enantiomers of the products could be obtained, their enantiomeric excesses were only low to moderate. Recently, we have found that a stereoselective acetylation of racemic p-hydroxyalkyl sulfones can be successfully carried out using several lipases, among which CAL-B and lipase PS (AMANO) proved most efficient. Moreover, application of a dynamic kinetic resolution procedure, in which lipase-promoted kinetic resolution was combined with a concomitant ruthenium-catalysed racem-ization of the substrates, gave the corresponding p-acetoxyalkyl sulfones 8 in yields... [Pg.163]

The ability of enzymes to achieve the selective esterification of one enantiomer of an alcohol over the other has been exploited by coupling this process with the in situ metal-catalysed racemisation of the unreactive enantiomer. Marr and co-workers have used the rhodium and iridium NHC complexes 44 and 45 to racemise the unreacted enantiomer of substrate 7 [17]. In combination with a lipase enzyme (Novozyme 435), excellent enantioselectivities were obtained in the acetylation of alcohol 7 to give the ester product 43 (Scheme 11.11). A related dynamic kinetic resolution has been reported by Corberdn and Peris [18]. hi their chemistry, the aldehyde 46 is readily racemised and the iridium NHC catalyst 35 catalyses the reversible reduction of aldehyde 46 to give an alcohol which is acylated by an enzyme to give the ester 47 in reasonable enantiomeric excess. [Pg.258]

Another enantioselective synthesis, shown in Scheme 13.18, involves a early kinetic resolution of the alcohol intermediate in Step B-2 by lipase PS. The stereochemistry at the C(7) methyl group is controlled by the exo selectivity in the conjugate addition (Step D-l). [Pg.1183]

The use of an enzyme in a cascade using nanoencapsulation has also been demonstrated [23]. In this case, the dynamic kinetic resolution (DKR) of secondary alcohols was achieved with an acidic zeolite and an incompatible enzyme, Candida antarctica lipase B (CALB) (Scheme 5.8). [Pg.141]

A combination of an enzymatic kinetic resolution and an intramolecular Diels-Alder has recently been described by Kita and coworkers [23]. In the first step of this domino process, the racemic alcohols ( )-8-55 are esterified in the presence of a Candida antarctica lipase (CALB) by using the functionalized alkenyl ester 8-56 to give (R)-8-57, which in the subsequent Diels-Alder reaction led to 8-58 in high enantioselectivity of 95 and 91 % ee, respectively and 81 % yield (Scheme 8.15). In-... [Pg.538]

In a very new example, the Kita group has presented a neat combination of a lipase-catalyzed kinetic resolution of a-hydroxynitrones and a 1,3-dipolar cycloaddition, which was successfully applied in the asymmetric total synthesis of (-)-ros-marinecine [25]. [Pg.539]

Hoyos, P., Buthe, A., Ansorge-Schumacher, M.B. et al. (2008) Highly efficient one pot dynamic kinetic resolution of benzoins with entrapped Pseudomonas stutzeri lipase. Journal of Molecular Catalysis B, Enzymatic, 52-53,133-139. [Pg.101]

Additional studies featuring reactions of thiophene derivatives detail biohydrolysis of (S)-3-(thiophen-2-ylthio)butanenitrile <06TL8119>, lipase catalyzed resolution of thiotetronic acids <06TL7163>, enzymatic kinetic resolution of l,l-dioxo-2,3-dihydrothiophen-3-ol <06TL5273>, and efficient synthesis of 6-methyl-2,3-dihydrothieno[2,3-c]furan 55, a coffee... [Pg.120]

In addition to Rh-catalysed hydroformylation, this special phase behaviour has been successfully applied to other continuous catalytic reactions - such as Ni-catalysed, enantioselective hydrovinylation [66] and the lipase-catalysed kinetic resolution and enantiomer separation of chiral alcohols [67]. [Pg.200]


See other pages where Lipases kinetic resolution is mentioned: [Pg.143]    [Pg.132]    [Pg.1028]    [Pg.149]    [Pg.143]    [Pg.132]    [Pg.1028]    [Pg.149]    [Pg.167]    [Pg.336]    [Pg.344]    [Pg.28]    [Pg.38]    [Pg.171]    [Pg.151]    [Pg.23]    [Pg.165]    [Pg.167]    [Pg.1228]    [Pg.531]    [Pg.97]    [Pg.328]   
See also in sourсe #XX -- [ Pg.378 ]

See also in sourсe #XX -- [ Pg.141 , Pg.216 , Pg.217 , Pg.218 , Pg.219 , Pg.220 ]

See also in sourсe #XX -- [ Pg.834 ]




SEARCH



Assay for Screening Lipases or Esterases in the Kinetic Resolution of Chiral p-Nitrophenyl Esters

Candida antarctica lipase dynamic kinetic resolution

Esterification, kinetic resolution, lipases

Hydrolysis kinetic resolution, lipases

Kinetic resolution transesterification, lipases

Lipase catalyzed kinetic resolution

Lipase-based dynamic kinetic resolution

Lipases dynamic kinetic resolution

Quick-E-Test in the Lipase- or Esterase-Catalyzed Kinetic Resolution of Chiral p-Nitrophenyl Esters

Resolution, dynamic kinetic lipase-catalyzed

© 2024 chempedia.info